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Using recently developed quantum wave function techniques, we have performed a simulation
of 8Rb atoms in a one-dimensional optical molasses, formed from counterpropagating laser beams

with orthogonal linear polarizations.

Both internal and external degrees of freedom are treated

quantum mechanically in one dimension and the spectrum of resonance fluorescence is calculated and
compared to recent experiments. Excellent agreement is obtained for the spectrum and additional
insight is gained into the experimental evidence for quantized motion in the optical potentials.

PACS numbers: 32.80.Pj, 42.50.Ar

Two recent experiments [1,2] have reported evidence
of quantized atomic motion in one-dimensional (1D) op-
tical molasses. In the experiment of Jessen et al. [2] well-
resolved “motional” sidebands due to spontaneous Ra-
man transitions between vibrational levels in the optical
potentials were observed in the fluorescence spectrum of
85Rb atoms. A similar experiment has reported the ob-
servation of stimulated Raman transitions in an absorp-
tion spectrum of Cs [1]. Very recently, these quantized
energy levels have been observed in 2D and 3D configu-
rations [3,4].

The temperatures achieved in these experiments cor-
respond to the accumulation of atoms in the few lowest
vibrational energy levels of the optical potentials. Thus,
a theoretical description of these phenomena should be
based on a fully quantum mechancial treatment of atomic
motion [5,6]. We report the results of such a quantum cal-
culation for the spectrum of resonance fluorescence corre-
sponding to the experiment of Jessen et al. [2]. The basis
of the present work is a quantum Monte Carlo wave func-
tion simulation of the master equation for laser cooling
[7,8]. This constitutes the first quantitative comparison
between theory and experiment for the fluorescence spec-
trum of optical molasses, and one of the few quantitative
comparisons of any kind in the field of laser cooling.

The basis of our theoretical discussion is the solution
of the generalized optical Bloch equations for the atomic
density matrix comprising both the internal and external
(center-of-mass) degrees of freedom. The Rb atoms are
driven on the 55,/ Fy = 3 — 5P3/5 F. = 4 transition
in a laser configuration consisting of two counterpropa-
gating light beams with orthogonal linear polarizations
[5]. This leads to a constant electric field amplitude,
but a spatially varying polarization vector €(z) with the
laser propagation along the z axis. In this electric field
the spatially varying Stark shifts of the:|FyM,) ground
states will form an alternating pattern of optical poten-
tials where minima will occur for the states |Fg Mg = +3)
at positions with pure o* light. Spontaneous emission
will cause transitions between these potentials. For red
laser detunings, A = w — weg < 0, this gives rise to po-
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larization gradient cooling. In the semiclassical picture
this cooling mechanism is explained in terms of Sisyphus
cooling [9]: one considers an atom moving on one of the
potential curves with transitions to the other potentials
occurring preferentially from higher points on the original
potential to lower points on the subsequent one. On the
average the atomic motion is damped. For small satura-
tion parameters so = 92/2/(A? +I'?/4) < 1 the excited
states can be eliminated. Here Q2 is the maximum Rabi
frequency on the My, = 3 to M, = 4 transition , and I is
the spontaneous emission rate.

The corresponding master equation for the density ma-
trix p of the ground state manifold and 1D motion in the
z direction is [5,6] (k= 1)

f—t = — i[Heg(2)p — pHlg(2)]

+k
+0 3 [ kL No(k) By (2)e 0Bl (2)e .
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Here k = 27 /) is the wave vector, N,(k,) is the an-
gular distribution of spontaneous photons with polariza-
tion o = 0,%1, and v9 = soI'/2 is the photon scattering
rate. The first two terms in (1) involve the non-Hermitian
atomic Hamiltonian

He(?) = £ - (Uo +z~§~m) S BL(3)B.(2), (2)

describing the motion of the atomic wave packet with
kinetic energy $?/2M in a multicomponent optical po-
tential with depths determined by Uy = so|A|/2. The
real part of the potential in (2) gives rise to quantized
energy levels (band structure), while the imaginary part
describes a loss rate due to optical pumping. The op-
erators B,(z) correspond to Raman transitions between
the ground state levels by absorption of a laser photon
and subsequent emission of a spontaneous photon with
polarization o; see Ref. [6].

The spectrum of resonance fluorescence, emitted
along the z axis, with frequency w’ and polarization
o, is given by the Fourier transform of the station-
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ary atomic dipole correlation function c,(t — tg) =
(B (t)e'k:2(1) B, (tg)e~k+2(t)) [6].  According to the
quantum regression theorem [8] we have
calt — to) = Tra{B}(2) 2 pO(B)} (t21t0), (3)
where the first order perturbed density operator p(l)(t)
obeys the same master equation as the density matrix
but with a different initial condition
P (to) = Bo(2) e*+p(to) - (4)
A direct solution of the master equation (1) to calcu-
late the autocorrelation function (3) is impractical due to
the large dimensionality of the density matrix equation
which involves N? elements [N = Ngx X Nint, where Niy
is the number of internal, and N, the number of (dis-
cretized) external degrees of freedom]. A simulation of
the quantum master equation in terms of wave functions
can replace the solution of the master equation for the
density matriz [7,8]. An important feature of the wave
function approach is that one only has to deal with a
wave function of dimension N, as opposed to working
with the density matrix which has N2 elements. In our
case of 8Rb we have N = 448 on a Fourier grid with
64 points corresponding to momenta up to +32kk [6);
10000 wave function realizations are needed for conver-
gence. This algorithm allowed a gain of about a factor
of 50 in computing time over a density matrix calcula-
tion. We emphasize that our Monte Carlo method based
on time-dependent Bloch functions treats the atomic mo-
mentum as a continuous variable; i.e., we do not assume
a discretization of atomic momenta [6], an assumption
which is inherent in any master equation treatment. Fur-
thermore, parallelizing the simulation algorithm allows
the calculations to be performed on a distributed system
of networked computers as we have done, with a corre-
sponding gain in computational power. In the approach
of Refs. [6,8], the simulation consists of propagation of
an atomic wave function |¥(t)) with the non-Hermitian
(damped) atomic Hamiltonian (2) interrupted at random
times by wave function collapses (“quantum jumps”)
[2(t)) — e**B, (2)|¥(2)), (5)
and subsequent wave function renormalization. The
Schrodinger equation for |¥(t) ) describes the time evo-
lution of the atomic wave packet in the periodic optical
potential, and its coupling to the laser driven internal

atomic dynamics. The times of the “quantum jumps”
are selected according to the delay function

P(t,k},0) = No(k}) 270 | Bo($)[T()) |, (6)
which gives the probability for emitting a spontaneous
photon at time ¢, with momentum k, along the z axis
and polarization o. The “quantum jump” (5) cor-
responds to an optical pumping process between the
atomic ground states, including the associated momen-
tum transfer to the atom. Averaging over these wave
function realizations gives the density matrix p(t) =
() )(T(t) |/ ¥(t)|?). The dipole correlation function
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(3) can be simulated following the approach developed
in Refs. [6,8]. The perturbed density matrix p(!)(¢) in
Eq. (3) can be interpreted as a first order response to
a “delta kick” at time t = tg, represented by the initial
condition (4). A simulation is obtained by introducing
a “perturbed” wave function |B:,(t)) which obeys the
Schrodinger equation for |¥(t) ) but now with initial con-
dition [compare Eq. (4)]

1Beo (t0) ) = e=*+* B, (2)[ ¥ (to) ), (7)
and quantum jumps of |3, (¢) ) dictated by the wave func-
tion |¥(t)) according to the delay function (6). The
dipole correlation function is

Colt —to) = ((L(®) [BL(2)e™*16is (1)) /1T (1) IP) , (8)
where the bold angular brackets indicate averaging over
both quantum jumps and initial times to.

The periodicity of the atomic Hamiltonian (2) in space
allows us to propagate the atomic wave packets as time
dependent Bloch functions U(z,t) = 1/v/21 €'%%uy(2,t)
with ¢ € (—k, k] a quasimomentum in the first Brillouin
zone, and uq(2,t) = uq(z + A/2,t) a periodic multicom-
ponent atomic wave function. The Hamiltonian evolu-
tion due to Heg preserves q, while quantum jumps cause
changes between families of Bloch functions, ¢ — ¢’. In
practice, we propagate the Bloch function u,(2,t) on the
unit cell of the lattice z € [0,A) using a split-operator
fast-Fourier transform method [6].

Figure 1 compares the resonance fluorescence spectrum
for 0% polarized light obtained by simulation (solid line)
with the experimental data of Jessen et al. [2] (crosses).
The central line is scattering at the laser frequency while
the first red and blue sidebands correspond to Raman
transitions between adjacent vibrational bands in the op-
tical potential. Following Ref. [2] the parameters were
taken as A = —4I', A = Q?/T'|A| = 0.23, which cor-
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FIG. 1. Spectrum of resonance fluorescence as a function
of the frequency v. The parameters are A = —4I", A = 0.23.
The solid line is the theoretical spectrum convolved with a
Lorentzian corresponding to a finite detector width of 3.8 kHz
and a Gaussian with width 20 kHz (residual Doppler broad-
ening). Crosses are the experimental result of Jessen et al.
[2]. The inset shows the total spectrum.
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FIG. 2. In the left panel the optical potentials for odd Mr
Zeeman sublevels of a ®Rb atom (Fy = 3 — F. = 4) are plot-
ted as a function of position z for the same parameters as Fig.
1. The solid (dashed) lines are the adiabatic (diabatic) po-
tentials. In the right panel we have plotted the corresponding
band structure as a function of the quasimomentum gq.

responds to a potential depth of Uy = 87Egr (with
Er/h = hk%/2M = 2m x 3.85 kHz the recoil energy).
The theoretical spectrum was obtained by convolving the
ab initio spectrum with a Lorentzian detector width of
3.8 kHz and a Gaussian with a width of 20 kHz [2]. The
latter corresponds to residual Doppler broadening due to
transverse motion of the atoms, detected because the ex-
perimental spectrum was measured at a small angle to
the z axis.

The positions of the sidebands are determined by the
Raman transition frequencies between the bands. Figure
2 shows the optical potentials and band structure for the
parameters of Fig. 1. On the left-hand side of this figure
the optical potentials (ac Stark shifts) for the laser cou-
pled My = £3, +1 Zeeman sublevels are shown as a func-
tion of z/A. The dashed lines correspond to the diagonal
part of the multichannel potential. The solid lines are a
set of adiabatic potentials obtained by diagonalization of
the potential matrix. Because of optical pumping, most
of the atomic population is accumulated in the My = £3
states. In the right panel we plot the corresponding band
structure as a function of the quasimomentum ¢ in the
first Brillouin zone (—2hk, 2hk] [10].

The asymmetry of the red and blue sideband intensi-
ties reflects the populations of the vibrational levels, and
thus the temperature of the atoms [2]. Agreement be-
tween experimental and theoretical asymmetries in Fig.
1 indicates that the wave function simulation predicts
the correct spectrum but does not tell us if the asym-
metry in the spectrum predicts the correct temperature.
Figures 3 and 4 show the variation of the kinetic energy
and the population of the lowest levels with the poten-
tial depth Uy, respectively. In Fig. 3, Ex = (p?)/2M
is the expectation value of the kinetic energy, and Ej
corresponds to the 1/4/e width of the momentum distri-
bution. For a Maxwell-Boltzmann velocity distribution
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FIG. 3. Variation of the kinetic energy with the potential
depth Up. E = (ﬁz) /2M is the expectation value of the ki-
netic energy and Ej, corresponds to the 1/+/e width of the mo-
mentum distribution. The damping parameter 7o is fixed to
6ERr/h. The crosses are temperatures derived from the asym-
metry of the experimental resonance fluorescence spectrum of
Jessen et al. [2] assuming a Maxwell-Boltzmann distribution
for the populations; the diamonds are the corresponding the-
oretical points derived from the Monte Carlo spectrum with
the same analysis.

these two quantities would be equal; similarly, the ratio
I1, /11— in Fig. 4 would be a constant, and equal to the
Boltzmann factor. In fact, we find a distribution which
deviates from a Maxwell-Boltzmann distribution. As ex-
pected, the experimental data points with temperatures
derived from the asymmetry of the sideband assuming a
Maxwell-Boltzmann distribution lie between the two the-
oretical curves (crosses in Fig. 3); the diamonds are de-
rived from the theoretical spectrum by a similar analysis.
The kinetic energy shows a minimum near Uy = 60ERg.
This corresponds to a maximum population in the ground
state of 42%. For the experimental parameters of Fig. 1
we find 35% of the total population (trapped and un-
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FIG. 4. Steady-state populations of the four first band lev-
els for odd Mz Zeeman sublevels of a 8Rb atom as a function
of the potential depth Uy. The damping parameter o is fixed
to 6 Er/k. The crosses correspond to the calculated points.
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FIG. 5. Splitting frequency between sidebands and central
peak as a function of A2, The diamonds correspond to the
theoretical position of the maximum of the sideband (after
convolution) of the computed spectrum. The crosses corre-
spond to the experimental data of Jessen et al. The dashed
line is the oscillation frequency obtained with the harmonic
approximation and the solid lines correspond to the computed
maximum and minimum transition frequencies between the
first four bands (0 — 1, 1 — 2, 2 — 3).

trapped atoms) in the ground state.

Laser cooling accumulates atoms predominantly in
the lowest vibrational states. This spatial localization
of atoms—on a scale small compared with the laser
wavelength—suppresses optical pumping transitions be-
tween different vibrational levels n # n’ (for the exper-
iment in [2] we find localization of A\/6). This leads to
a narrowing of the lines in the optical spectrum (Lamb-
Dicke narrowing). For the parameters of Fig. 1 we have
an optical pumping rate yo = 27 x 84 kHz. This should
be compared with the width of 4.5 kHz for the central
line, and 17 kHz for the sidebands.

A broadening mechanism is present for the sidebands,
due to the anharmonicity of the optical potential. This
leads to different transition frequencies for n — n+1 (by
~ 1Eg/hK). For the present parameters this anharmonic-
ity is not resolved even in the unconvolved spectrum. The
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width of the sidebands in Fig. 1, however, is dominated
by the experimental resolution. In Fig. 5 we compare
the position of the motional sidebands obtained by the
full quantum treatment with experimental data [2] and
simplified theories. It turns out that only the full quan-
tum calculation is able to produce the correct position,
since it includes the anharmonic effect and shifts due to
damping. Work in progress suggests that a full quan-
tum treatment of the 2D case by this Monte Carlo wave
function technique, including a calculation of the spec-
trum, is still a feasible problem. This again reveals the
power of the present technique to handle extremely large
problems, probably unapproachable by other methods.
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