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We sketch two rigorous proofs of the stability of the hydrogen molecule in quantum mechanics.
The first one is based on an extrapolation of variational estimates of the ground state energy of a
positronium molecule to arbitrary mass ratios. The second one is an extension of Heitler-London
theory to nuclei of finite mass.
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The stability of the hydrogen molecule H2 (ppe e )
plays an important role in our understanding of chemi-
cal binding and thus deserves a mathematically precise
analysis. It appears that, within the usual formalism of
nonrelativistic quantum mechanics, a rigorous proof of
the fact that the system (ppe e ) has bound states, i.e.,

that H2 is stable, is not available in the literature, at
least to our knowledge.

In this Letter, we sketch two somewhat complemen-
tary proofs of the stability of H2. The first proof starts
from a four-body system consisting of two particles of
charge +1 and two particles of charge —1, all of which
have the same mass, i.e., from a system corresponding to
a positronium molecule, the stability of which has been
essentially established by Hylleraas and Ore [1], up to a
subtlety concerning the threshold of the continuous spec-
trum.

An elementary variational argument can then be used
to extrapolate upper bounds on the ground state energy
of systems where the positively charged particles have
mass M and the negatively charged ones have mass m to
arbitrary ratios m/M. These bounds will prove binding,
for any value of m/M, including the case of H2.

The second proof is inspired by the Heitler-London
theory of binding in the Born-Oppenheimer limit, cor-
responding to rn/M ~ 0, and extends that theory to an
interval 0 & m/M & 0.144. For small values of m/M it
yields better bounds than the first proof.

Details of these results, including a study of stability
as a function of the masses of the constituent particles
will be presented in forthcoming papers by Richard [2]
and Seifert [3].

Throughout this paper, we shall employ units in which
the reduced mass and the ground state energy of the
actual hydrogen atom are Mm/(M + m) = 1 and
Ep (pe ) = —1, and we restrict our analysis to Coulomb
systems, except for a remark in the conclusions.

To determine the nature of binding in the H2 molecule,
one has first to understand the ordering of the thresh-
old energies that appear when the system (ppe e ) or
(ptpe e ) is decomposed into two or more noninteracting

clusters. We only consider the system (ppe e ), but the
arguments for a system like (dpe e ) are similar.

The minimal energy of a decomposition of (ppe e )
into four noninteracting clusters is obviously E4 = 0, the
one of a decomposition into three noninteracting clusters,
(pe ) (p) (e ), is Es = Ep (pe ) = —1. The third and
fourth decompositions are into the clusters (pe e ) (p)
and (e pp) (e ). Their energies are given by Ep (pe e )
and Ep (e pp), i.e. , the lowest energy Et 1(A) of

H(A) = Ap, + (1 —A) (p2 + ps) +
T23 T12 T13

for A = m/(M + m) and A = M/(M + m), respectively.
Here r,~

= Ix, —x~ I, and M and rn denote the masses of
the proton and the electron. By the variational principle,
we have

Ei 1(A) & AEt 1(l) + (1 —A)Ei 1(0) (2)

Et 1(0) & Ep (Hp) + (Qp, V~s gp) (4)

where gp is the ground state of Hp, with energy
Ep (Hp) = —2. Evaluating the right hand side of this
inequality yields the bound

E(pl(0) & 4' (5)

for0&A&1.
Consider first the case A = 0. It corresponds to a

modified H ion with an infinitely massive proton, and
electrons whose mass is rescaled to 1, in our units. Hill

[4] has shown that this system has exactly one bound
state with the electrons in a spin-singlet state. Howeve.",
the ground state energy E(sl (0) is not known exactly. As
a result of

(2 2b (2 2
H(0) &Hp=

I p2 — I+ I
p3-

T12 ) 4 T13

we find Eisa(0) & —2. This can be improved by taking
into account the electronic repulsion V2s = 2/r23 and
using the projection method [5]. We have H(0) = Hp +
V23 with V23 positive, and thus
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in our units. The case A = 1 corresponds to (@pe ) with
infinitely massive protons, i.e. , a limiting case of hydro-
gen ion H2+. The stability of the H2+ ion has been estab-
lished by Hill [4], but the exact value of Ep (ppe ) is not
known. Thus we must prove a suitable lower bound on
Ep (@pe ). This can be accomplished by using the Born-
Oppenheimer approximation, which is exact here, and
the so-called criterion of local energy [5]. Let Hrr denote
the Hamiltonian of the system with the protons separated
by a distance B, and a single quantum mechanical elec-
tron. The Perron-Frobenius theorem guarantees that HR
has a unique ground state pR(x) which is a positive func-
tion of the electron position x. The corresponding ground
state energy is denoted by Err. Let p(x) be a positive
function of x, and define Err(x):= &p(x) (Hrr&p) (x).
Then

irlf Err(x) & Err & slip ER(x),
K X

as one easily shows. Thus

Ep (ppe ) & minErr & min[inf Err(x)] .
R R

(6)

(7)

Choosing p(x) to be proportional to exp( —cry) cosh(Pv),
with p, = (ri + r2)/R and v = (ri —r2)/R, where r,
is the distance between the electron and the ith proton,
one obtains, after a tedious calculation (using elliptic co-
ordinates) and for an optimal choice of the constants ct

and P, that E~3&(l) & —1.6225. The inequality (2) then
implies Eisa(A) & —2 for all 0 & A & 1. In particular, we
have

Eo(pe e ), Ep(e pp) & 2Ep (pe ) = —2 (8)

for all mass ratios, and thus the lowest threshold always
corresponds to the decompostion into two neutral atoms.

The Hunziker —Van Winter —Zhislin (HVZ) theorem [6]
now tells us that the continuous spectrum of the Hamil-
tonian H& l of the four-body system (@pe e ) is the in-
terval [E„oo), with E, = 2Ep (pe ), for all m/M. In
particular, when m/M is given its physical value then

ircontinuous(H ) = [ 2~ oo). (9)

Thus, to prove that the system (ape e ) has bound
states, it sufBces to construct a variational wave func-
tion, Q, with the property that

(q, H~'lq) & -2. (10)

We shall sketch two somewhat complementary methods
to construct a g such that (10) holds. The first method
to prove (10) starts from a beautiful argument of Hyller-
aas and Ore [1] suggesting that the positronium molecule
(e+e+e e ) is bound. We make use of their results in a
way that has been outlined briefiy in [7]. They use the
simple variational wave function Q (Ax, ), where

1
Q (x,) = exp ——(ri3+ ri4+ T23+ T24)

2

x cosh —(rr3 —Tr4 T23 + T24) .
2

and the minimum is reached near P = 0.48. The thresh-
old of the continuous spectrum in (e+e+e e ) is twice
the ground state energy of positronium, i.e. ,

E, = 2Ep (e+e ) .

Next, we rewrite the Hamiltonian H~ ~ of the hydrogen
molecule as

where

H~ ~ = H~+IIA, (14)

+
~ (p, +p, +p, +p,)+&,

1 1i
i, 2M 2m)
2 2 2 2 2 2V= +

712 T34 P23 T24r13
(15)

HA =
2M

2 2 2 2(Pl + P2 P3 P4) ~

where Hg is even under charge conjugation and HA is
odd; see [7]. The symmetric Hamiltonian Hs corresponds
to a rescaled version of the positronium molecule, with
the constituent mass m replaced by 2Mm/(M+ m). We
notice that the minimal energies in the spectra of H& ~

and of Hs for two infinitely separated neutral atoms are
identical. We know that this is the lowest threshold for
any value of m/M. It then follows immediately from (12)
that the lowest energy in the spectrum of Hp satisfies

Eo(Hs) & 2 0168Eo (pe ) (16)

which is strictly smaller than —2 if m/M is given its
physical value. Next, we note that

E.(H'") & (~os, (Hs+ H. )~os), (»)
where gos is a normalized wave function symmetric under
charge conjugation, like the one used by Hylleraas and
Ore, and such that (/os, Hsgos) & Ep(Hs) + e, for some
e & 0 which can be chosen arbitrarily small. Since HA is
odd under charge conjugation, (/os, H~gps) = 0. Hence
it follows that

Eo(H~ l) & Eo(Hs) & 2 0168Eo (pe )

which, by (10), proves that (ape e ) is bound, for any
value of m/M, in particular when m/M is given its phys-
ical value. The inequality Ep (H~4l) & Ep(Hs) is re-
fiected nicely in actual binding energies which grow from
3'Fo for the positronium molecule to 1?% for the hydro-
gen molecule, according to the estimates reported in [9].
Previously, Abdel-Raouf [10] and Rebane [9] stressed the
regularity of the binding energy as a function of m/M,
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The scale parameter A is determined by the virial theo-
rem (which holds for variational bounds [8]), and the vari-
ational energy Ep(/3) can be calculated explicitly [1,2]. As
a result one finds that

Ep (e+e+e e ) & min Ep(P) 2.0168Ep (e+e ), (12)
P
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with p = 2Mm/(2M + m). Within the Born-
Oppenheimer approximation, suitable ansatz wave func-
tions are the ones of Heitler and London given by

V+(~, yi, y2) = C'+[f(lyi —~/21)f(l»+ Y/21)

+f(lyi + Y/2I) f (Iy2 —~/21)]
(20)

with + corresponding to spin singlet and —correspond-
ing to spin triplet for the electrons, and f(r) = const x
exp( —2pr). The orbital ground state wave function of
the hydrogen molecule is symmetric in the electron posi-
tions. This motivates us to use the following variational
wave function:

g(~, yi, y~) = &(P)]~]e ' V+ (~, yi, y2), (21)

where C(p) is a constant chosen such that (1t, 1') = 1.
After very tedious calculations and lengthy estimates car-
ried out in [3], one finds that, for an optimal choice of

(@,H(')Q) & —2.082, (22)

which proves (10) and hence establishes the result that
(@pe e ) is bound. As shown in [3], this method
proves stability and provides an estimate of the bind-

but missed the fact that the bound (12) for rn = M
implies binding for m/M small enough. Let us finally
sketch how the results on the thresholds can be com-
bined with an improved version of Heitler-London theory
to prove binding for the hydrogen molecule. We remove
the center-of-mass motion, and introduce the distances Y
between the two nuclei, and y, (i = 1, 2) between their
middle and the electrons, so that the Hamiltonian reads,
in suitable units, as

1 1 1 1

2p

1 2 2—2
ly'+ e&/21

+ +, 19

ing energy for 0 & (m/M) & 0.144. Our methods
can be extended, in principle, to systems of three and
four particles interacting through "universal" (mass- and
fiavor-independent) two-body potentials. Binding will
be strongest in systems of four particles with masses
(M, M, m, m) in the limiting regime when M )) m.
Simple quark models have Havor-independent potentials,
and one thus is led to predict stability of exotic mesons
(Qqqq) with two units of heavy fiavor [7].
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