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Tau Polarimetry with Inclusive Decays
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The spin asymmetry parameter A characterizing the angular distribution of the total hadron
momentum in the decay of a polarized tau can be calculated rigorously using perturbative QCD and
the operator product expansion. Perturbative QCD corrections to the free quark result A = 1/3
can be expressed as a power series in n, (M ) and nonperturbative QCD corrections can be expanded
systematically in powers of 1/M . The QCD prediction is A = 0.41 + 0.02. A measurement in
agreement with this prediction would provide strong support for the precise determination of o.,
from tau decay data.

PACS numbers: 13.35.+s,12.38.BX,12.38sLg, 13.88.+e

The spin dependence of processes involving elementary
particles contains a wealth of information about their
fundamental interactions. Unfortunately this informa-
tion is not easily accessible to experiment. It requires
either the use of polarized beams and targets, or the mea-
surement of the polarization of Anal state particles. The
tau lepton is one of the few elementary particles whose
spin can be electively analyzed by its own decay. It is
well known that several of the exclusive decay modes of
the tau can be used to analyze its spin [1,2]. In this Let-
ter, I point out that inclusive decays into hadrons can also
be used for this purpose. The polarization of a sample
of taus that decay into hadrons can be determined from
the angular distribution of the total momentum of the
hadrons. The asymmetry parameter that characterizes
the angular distribution can be computed systematically
using perturbative QCD and the operator product expan-
sion. Measurements of these spin-dependent observables
could provide dramatic support for the applicability of
perturbative QCD to the inclusive hadronic decays of
the tau.

It is convenient to normalize the inclusive decay rate
of the tau lepton into a neutrino plus hadrons to the
electronic decay rate by deBning the ratio

I'(w —+ v + hadrons)
I'(~ —+ v e v, )

For a sample of taus with polarization P, the angle 8 be-
tween the total momentum of the hadrons in the tau rest
frame and the spin quantization axis has a distribution
proportional to 1+A Pcos8, where A is an asymme-
try parameter. This angular distribution can be used to
separate B„into "forward" and "backward" components
R~ and Bgy..

dB 1+Pcos6W 1 —Pcos0
(2)

The asymmetry parameter A is then

B~ —B~
Ry +R~ (3)

A naive estimate of the asymmetry parameter can be ob-
tained by considering the decay of the tau into hadrons at
the quark level, where it proceeds through the processes

—+ v du and 7. —+ v su. The momentum of the du
and su pairs can be identified with the total momentum
of the hadrons. Ignoring the QCD interactions that bind
the quarks into color singlet hadrons, the angular distri-
bution of the total hadron momentum is

—([V„di + iV„, i ) 1 + Pc so8
i

. —(4)
dB 3 ~ 2 1

The squares of the Kobayashi-Maskawa matrix elements
add up to 1 to high accuracy, so they will be omitted
below. Prom (4), the naive estimates for the ratio (1) and
the asymmetry parameter (3) are R = 3 and A = 1/3.

In the case of A, the QCD corrections to the naive re-
sult can be computed systematically using perturbative
QCD and the operator product expansion [3—5]. The per-
turbative corrections can be expanded as a power series
in n, (M ) [6] and the nonperturbative corrections can be
organized systematically into an expansion in powers of
1/M . A thorough analysis of the QCD and electroweak
corrections to the ratio B has recently been carried out
[7]. The methods that were used to calculate the ratio R
can also be used for a rigorous calculation of the asymme-
try parameter A . The starting point is an expression for
the angular distribution of the total hadron momentum
as an integral over the invariant mass s of the hadrons:

dB
Gt cos 0

~-' ds ( s )'

x ImIIIcI(s+Is) (I+ cPcs+t)2 (I —Pco )~ sI+IImIII I(s+Is)(1+Pc 6)os
Mg (5)
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where II( ) (s), J = 0, 1 are the transverse and longitudinal correlators for the quark current that couples to the virtual
W boson. The notation is the same as in Ref. [7]. The correlators II(~)(s) are analytic functions of s except along
the positive real s axis. This allows the integral in (5) to be expressed as a contour integral in the complex s plane.
The contour can be deformed so that it runs counterclockwise around the circle ~s~ = M2. The resulting expressions
for the forward and backward components of R~ defined in (2) are

R~ = —12'2 1

27ri

R~ = —127r
21

27ri

2

, ~

[~("()+~("()],
]=M~ 7 ( v )

2 (
~ 2 ', ll(')(s)~ .

(6)

The contour integral expressions (6) and (7) reveal that
the polarization asymmetry A, like the ratio R, is com-
pletely determined by correlation functions at the dis-
tance scale 1/M . This implies that the nonperturbative
long distance effects of @CD can be expressed in terms
of matrix elements of local operators. These matrix el-
ements appear when the operator product expansion is
used to expand the correlators II( )(s) in (6) and (7)
in powers of 1/s. Evaluating the contour integrals, the
@CD corrections to the naive predictions R~ = 2 and
Rii = 1 are obtained as systematic expansions in powers
of 1/M2. There is also an important electroweak correc-
tion consisting of a multiplicative short distance factor
SEw = 1.019 [8]. The resulting expressions for the for-
ward and backward components of R have the form

Rp = 2SEw(1 + 6~ + b'~ + 6'~ + 6~( + .),
(8)

R~ = SEw{1+6~ +6~ +6~ +6~ + ),(o) (2) (4) (6)

(9)

where the fractional corrections 6+ and 6& are propor-(n) (n)

tional to 1/M" with coefficients that depend logarithrni-
cally on M . For R = R~ + B~, the fractional correc-
tions to the free quark value 3SEw are (2hz + 6z )/3.(n) (n)

The fractional corrections bz and hz can be calcu-(n) (n)

lated straightforwardly using the operator product ex-
pansions for the correlators II(J) (s) that are collected in
Ref. [7]. The dimension-0 corrections, which represent
the purely perturbative efkcts from the interactions of
massless quarks and gluons, are

term in (10) and (ll) is the fourth coefficient in the per-
turbative expansion of —2ir s(d/ds)II( ) (s) in powers of

n, /ir and has not been calculated. The previous coeffi-

cients are 1, 1, 1.64, and 6.37 [9). We assign a very con-

servative error to this unknown coeKcient: d4 = 0 + 100.
The corresponding coeKcient in the fractional correction
to R is then 78.0 + 100. The dimension-2 corrections
are perturbative corrections due to the running quark
masses. The only correction that is numerically signifi-
cant comes from the strange quark mass m, = m, (M ):

= —9 sin l9C

6~ = —6 sin l9c
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(4) 2 11 n, & ({n,/7r)GG)
18 vrp M4

2 (mug)+ 7r M4
72. 2 ~ m

sin ~c—
7 M4 '

(4) 2
(' ll n, ((n, /~)GG)

where Hc is the Cabbibo mixing angle: sin Hc = 0.049.
For the running strange quark mass in the MS scheme
evaluated at the scale M, we take the value m, (M ) =
0.17 + 0.02 GeV. The first nonperturbative corrections
appear at dimension 4 in the form of scale invariant ma-
trix elements called the gluon condensate and quark con-
densates:

b."' = —"+ 5765 —" '+ 3448 —" '

+ (d4+ 165.1) (—)
A

b ——+ 4077 — + 10 13

+ (da —96.1) (
—')

(10)

Note that the contribution of the gluon condensate
((n, /7r)GG) cancels to order n, in the fractional cor-

rection (26'z + BID )/3 to the ratio R . This results in a(4) (4)

suppression of' the gluon condensate contribution to B„
by 2 orders of magnitude. We take the value of the gluon
condensate to be ((n, /~)GG) = (2+1) x 10 2 GeV [10].
The matrix element (ming) in (14) is a weighted average
of the quark condensates:

where n, = n, (M ) is the running coupling constant of
@CD in the modified minimal subtraction (MS) scheme,
evaluated at the scale M„. The coeKcient d4 in the o,4

(mg@) = (m„uu) + cos ec(m~dd) + sin 8c(m, ss)

(16)
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Its value is (m@g) = (—8+1) x 10 GeV . The inverse
power of n, (M ) multiplying the m, (M )4 term in (14)
was first understood by Broadhurst and Generalis [11].
At dimension 6, there are too many unknown matrix el-
ements for a completely systematic treatment. Within
the vacuum saturation approximation, these corrections
are

256vrs pn, (QQ)
~

27 M6

2048vr pn, (gQ)
27 M

(17)

(18)

TABLE I. @CD predictions for n, (M ) and A as a
function of the ratio R . The errors due to variations of
d4, m, (M ), ((n, /vr)GG), (mug), and pn, (Qg) have been
added in quadrature.

R
3.50
3.52
3.54
3.56
3.58
3.60
3.62
3.64
3.66
3.70

n, (M )
0.287 + 0.009
0,294 + 0.009
0.301 + 0.010
0.308 + 0.010
0.315 + 0.011
0.321 + 0,012
0.328 + 0.012
0.334 + 0.013
0.340 + 0.013
0.352 + 0.015

A
0.407 + 0.023
0.408 + 0.023
0.409 + 0.023
0.411 + 0.023
0,412 + 0.023
0.413 + 0.022
0.414 + 0.022
0,415 + 0.022
0.417 + 0.022
0.419 + 0.022

with p = l. It has been found empirically that this ap-
proximation underestimates the size of the dimension-6
correction, and it is better to treat pn, (gQ) as an ef-
fective scale-invariant operator of dimension 6, indepen-
dent of (QQ). The best estimate for this parameter is
pn, (gg) = (4 + 2) x 10 GeV . The dimension-8 and
higher corrections are assumed to be completely negligi-
ble.

Inserting the fractional corrections given above into (8)
and (9), we obtain predictions for the ratio R = R~+R~
and the asymmetry parameter A defined in (3) as a
function of n, (M ) and the five parameters d4, m, (M ),
((n, /~)GG), (mug), and pn, (QQ) . Alternatively, given
a value for R, we can predict both n, (M ) and A
The predictions are shown in Table I. The uncertainty in
n, (M ) is dominated by the assumed error of +100 in the
coefficient d4. For R = 3.60, the uncertainty in n, (M )
is 3.6%%uo. After d4, the next largest errors are 1.1% from
pn, (@Q) and 0.4%%uo from m, (M ). The uncertainty in
A is dominated by the gluon condensate, and is 5.4%
for R = 3.60. The next largest errors are 1.8% from
pn, (QQ) and 0.7% from d4.

There are two independent ways of measuring the ra-
tio B experimentally. Using the universality of elec-
tron and muon couplings, it can be expressed in terms
of the electronic branching fraction B, of the tau: B
1/B, —1.973. Alternatively, using the universality of

electron and tau couplings as well, it can be expressed
in terms of the masses and lifetimes of the p, and ~:
R = (~„/w )(M„/M )s —1.973. The present world aver-
age for the electronic branching fraction is B, = (17.78 +
0.15)% [12], and it gives the ratio R = 3.651 + 0.047.
The present world average for the tau lifetime is w

(2.96 + 0.03) x 10 s [12]. Combined with the re-
cent precise measurement of the tau mass [13], it gives
the ratio R = 3.545 + 0.056. Forming the weighted
average of the two independent determinations of R,
we get R = 3.607 + 0.036. From Table I, this deter-
mines the running coupling constant at the scale M to
be n, (M ) = 0.319+0.017. We have added in quadrature
the error from Table I and the error due to the experimen-
tal uncertainty in B . Using the renormalization group to
evolve the running coupling constant up to the Z mass,
we obtain n, (Mz) = 0.1176+0.0021. We evolved from
M up to the 5 quark threshold Mb = 5 GeV assuming 4
massless flavors of quarks and then up to Mz assuming
5 massless fiavors, demanding continuity of n, (p) across
the b quark threshold. The QCD prediction for the asym-
metry parameter is A = 0.413 + 0.022. A measurement
of A consistent with this prediction would provide dra-
matic support for the precise determination of o,, from ~
decay.

Note that the precision of the predictions in Table I
is about 5%, which is remarkably small for observables
that involve the strong interactions. The fundamental as-
sumption underlying the error analysis is that the opera-
tor product expansion can be applied to QCD correlation
functions at the tau mass scale. Thus a measurement of
A~ would also provide a test of this crucial assumption.

To measure the asymmetry parameter A, one must
accumulate an unbiased sample of polarized tau decays.
If the tau sample has polarization P, then the average
value of the cosine of the angle t9 between the spin quan-
tization axis and the total hadron momentum in the rest
frame of the decaying 7. is

(cos8) = s A P.
At low energy e+e machines (such as a tau/charm or
B factory), one would have to use a golden decay mode
of the 7.+, such as v sr+ or v p+, to identify the recoiling

and to measure its polarization. Unfortunately, the
decay products of the 7+ and w are often overlapping
in space, so assembling an unbiased sample of tau decays
presents a severe loss of statistics.

At a Ze factory (such as SLC or LEP), it is relatively
easy to obtain an unbiased sample of v. decays, because
the high energy 7.+ and ~ from the decay of the Z are
produced back to back with well-separated decay prod-
ucts. In addition, the taus are automatically produced
with helicity polarization P = —2(1—4 sin 8rv) = —0.14,
so there is no need to measure their polarization. To
determine the parameter A, one must measure the in-
variant mass 8 of the hadrons produced in the decay of

1318



VOLUME 71, NUMBER 9 PH YSICAL REVIEW LETTERS 30 AUGUST 1993

(2z —1)Mz —s
cosI9 =

M2 —8
(20)

Inserting this into (19), we obtain

1 —z 1 f 1

1 —s/M2 2 q 3 (21)

If the average on the left side of (21) is taken over a sam-
ple of N tau decays, the error scales like 1/~N. Thus
by accumulating a large enough tau sample, it should be
possible to measure A with very high precision. The
QCD prediction A = 0.41 6 0.02 can be clearly distin-
guished from the free quark value of 1/3 if the error on
the quantity on the left side of (21) can be reduced to 1
part in 1000. If it could be measured with even higher
precision, it could be used to measure the gluon conden-
sate ((o.,/vr)GG), since the value of this matrix element
is the dominant error in A . Alternatively, if we accept
the QCD prediction for A, then (21) could be used to
measure the polarization P with a precision of 5%, which
corresponds to a 0.4% determination of sin e~.

By the same arguments that were used for R and A,
the hadronic energy distribution dR /dz can also be cal-
culated rigorously from QCD for values of z sufficiently
close to 1. Perturbative corrections can be expanded as
a power series in o.,(~zM ), and nonperturbative cor-
rections can be expanded systematically in powers of
1/zM2. The QCD prediction for the hadronic energy
distribution will be presented elsewhere [14].

In this Letter, we have introduced a new observable
involving hadronic decays of the tau lepton that can be
calculated rigorously from QCD. The parameter A that

the tau and also their energy fraction z = EH/E, where
EH is the total energy of the hadrons in the rest frame
of the Zo and E = Mz /2 is the energy of the decaying
tau. Choosing the spin quantization axis to lie along the
direction of the tau momentum, the angle t9 is given by
[21

governs the angular distribution of the total hadron mo-
mentum in the decay of a polarized tau can be calculated
with the same degree of reliability as the ratio B . The
QCD prediction for A differs from the free quark value
by about 20%, which is much larger than the errors in
the QCD prediction which are at the 5% level. Thus
hadronic decays of the tau lepton continue to provide a
remarkable laboratory in which QCD can be tested at
low energies with unprecedented precision.
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