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Proving the Low Energy Theorem of Hidden Local Symmetry
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Based on the Ward-Takahashi identity for the Becchi-Rouet-Stora symmetry, we prove to
all orders of the loop expansion the low energy theorem of hidden local symmetry for the
vector mesons (a version of the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation) in the
U(N)1. x U(N)n/U(N)v nonlinear chiral Lagrangian.

PACS numbers: 11.40.Fy, 11.10.Gh, 11.10.Lm, 11.30.Rd

Hidden local symmetry (HLS) is a natural framework
for describing the vector mesons in a manner consistent
with the chiral symmetry of @CD [1]. The HLS La-
grangian yields at tree level a successful phenomenol-
ogy for the pions and the p mesons. By choosing a
parameter a = 2 in this HLS Lagrangian, we have [2]
(1) universality of the p meson coupling [3] g~ = g (g
is the HLS gauge coupling), (2) Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin (KSRF) relation [4] (version II)
m = 2f~g, and (3) p meson dominance of the elec-
tromagnetic form factor of the pion g~ = 0 [3].

Most remarkably, we further obtain an a-independent
relation [5] gz/gz ——2f2, with gz being the strength
of p-p mixing. This is actually another version of the
celebrated KSRF relation (KSRF I) and is a decisive test
of the HLS in the hadron physics. Since it follows from
the symmetry structure alone, it was conjectured [5] to
be a low energy theorem valid at zero momenta for any
Lagrangian possessing the HLS and was further proved
[6] at tree level. Although this is a relation among off-
shell quantities, it is argued [7] that the consequence of
HLS is physical when the p meson can be regarded as
light.

If it is indeed a genuine low energy theorem surviving
the loop corrections, analogs of such a relation would also
be useful for strongly coupled Higgs models or models of
the dynamical electroweak symmetry breaking. Actually
this HLS Lagrangian can be straightforwardly applied to
such models [8]. Quite recently, it was shown in Landau
gauge [9] that the above "low energy theorem" as well as
the a = 2 tree-level results at zero momenta is not altered
by the one-loop corrections, thus strongly suggesting that
it may indeed be a true low energy theorem. These re-
sults are actually the relations coming from O(pz) opera-
tors or dimension-2 operators (counting only dimensions
of the gauge fields and the derivatives).

In this paper we shall prove that the above low energy
theorem of HLS actually holds at any Loop order, based
on the Ward-Takahashi (WT) identity for the Becchi-
Rouet-Stora (BRS) symmetry. By restricting ourselves
to the dimension-2 operators mentioned above, we can
prove it by mathematical induction technically in quite
the same way as the renormalizability proof for gauge

Dp(I. —:c7p(1. —iVI (I, +, &(1.&I,I, (2)

and similarly with replacement I +-+ R, VL,„+-+ VR„,
where V„(= V~ T ) is the hidden gauge boson field and
VL,& and VR& denote the external gauge fields gauging
the Gg] b [ symmetry.

Now we consider the loop effects of the model. We as-
sume that there exists a gauge invariant regularization
(for example, the dimensional regularization). Let us
take a covariant gauge condition for the HLS, and intro-
duce the corresponding gauge-fixing (GF) and Faddeev-
Popov (FP) terms:

l:GF+ l:FP = B 0"V + aB B +iC 0"D„—C, (3)

theories [10] and two-dimensional nonlinear sigma mod-
els [11]. The proof of our statement is, however, by no
means trivial: Indeed, as a gauge theory, the present sys-
tem is a novel one of nonrenormalizable type. As a non-
linear sigma model also, the present system has propagat-
ing gauge bosons, which generate nonvanishing (in fact,
divergent) loop corrections also to the dimension-2 parts
in the Lagrangian, even if the dimensional regularization
is used. This is in sharp contrast to the usual nonlinear
sigma model without propagating gauge bosons, in which
the L-loop corrections contribute only to the dimension-
2(L + 1) terms in the action [12—14].

Let us start with the Gg~ b ~ x H~, ~
"linear model, "

with G = U(N)1, x U(N)~ and H = U(N)~. The La-
grangian is given by [2]

l:= l:~ + al:~ + l:k;„(V„),
2 2

= ——tr (D„g (' + D„g („')v 4

where a is a constant and l:i,;„(V„) denotes the ki-
netic term of the hidden gauge boson (vector meson).
Here (1,(x) and (~(x) are two U(N)-matrix valued
variables, which transform as (I, ~(x) —+ (I R(x)
h(x)(I. It(x)gl &, where h(x) c Hi, i and gl, ~ c
Gsi, b i. These variables are parametrized as (I, ~(x) =
exp[i/a& &(x)T ], where T denotes the U(N) generator.
The covariant derivatives of (I, R(x) are defined by
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Sg[P, V]= d x a~ l:~ (P, V) + a~~)l:v (P, V')

S4[C, K]= d 2: [Zk;„(V„)+ K 6iiC],
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where B is the Nakanishi-Lautrap (NL) field and C
(C ) the FP ghost (antighost) field. In this paper we
do not consider the radiative corrections due to the ex-
ternal gauge fields V„'—:(Vl „,Vz~„), so that we need not
introduce the gauge-fixing terms for V&. Then, the corre-
sponding ghost fields C'—:(Cr, CR) are nonpropagating.

The infinitesimal form of the C~~b~~ x H~, ~ transfor-
mation of the Nambu-Goldstone (NG) field gV = (PL, gPR)
is given by 6P' = O'W'(P) + 6~&'(P)—:0 W&(P),
where A denotes a set (a, i) of labels of Hi «i and Gsi b~i.
Accordingly, the BRS transformation of the NG fields P',
the gauge fields V„:—(V„,V„'), and the FP ghost fields

C —= (C, C') are respectively given by

6iip' = C WAqP
~

W~ —= W~(p) ~4') '

6(iV„=B~C + V„C f~~ (4)

6iiC = ——C C kgA ~ B C A

2

We define the dimension of the fields as dim[/& z] = 0,
dim[V„] = l. It is also convenient to assign the following

dimensions to the FP ghosts: dim[C ] = 0, dim[C ] =
2. Then the BRS transformation does not change the
dimension. According to the above dimension counting,
we may divide the Lagrangian Eq. (1) plus Eq. (3)
into two parts: (1) dimension-2 part Z~ + aLi and (2)
dimension-4 part Lk;„(V&) + ZGF + Zpp. (We count the
dimension of the fields and derivatives only, hereafter. )

Now, we consider the quantum correction to this sys-
tem at any loop order, and prove the following proposi-
tion.

Proposition As far as.—the dimension-2 operators are
concerned, all the quantum corrections, including the 6-
nite parts as well as the divergent parts, can be absorbed
into the original dimension-2 Lagrangian ZA + ad~ by a
suitable redefinition (renormalization) of the parameters
a, f2, and the fields P', V„.

This implies that the tree-level dimension-2 La-
grangian, with the parameters and fields substituted by
the "renormalized" ones, already describes the exact ac-
tion at any loop order, and therefore that; all the low
energy theorems derived from it receive no quantum cor-
rections at all.

We prove the above proposition in the same way as
the renormalizability proof for gauge theories [10) and
two-dimensional nonlinear sigma models [ll]. We can
write down the WT identity for the effective action I'.
The NL fields B and the Fp antighost Gelds C can be
eliminated from I' by using their equations of motion as
usual. Then the tree-level action 8 = I't„, reads

s[C, K; a]= S2[y, v'] + S4[C, K],

where 4& = (P', V&, C ) are the field variables and
K = (K, , K~~, LA) [K~~ = (K",K,"), L~ = (L,2, )]
denote the BRS source fields. We have rewritten a and
f2 as af ~

a~~ f and f ~ a~ f, so that the renormal-
ization of a and f corresponds to that of a:—(a~~, a~).
According to the dimension assignment of the fields, the
dimension of the above BRS source fields K is given by
dim[K, ] = dim[L~] = 4 and dim[K~~] = 3.

The WT identity for the effective action F is given by

where the * operation is defined by

G=( )e 6F 6G
( )e 6F6G

6C 6K 6K 6C

for arbitrary functionals F[O, K] and G[4, K]. [Here the

symbols 6 and 6 denote the derivatives from the left and
right, respectively, and (—) denotes +1 or —1 when C

is bosonic or fermionic, respectively. ]
The effective action is calculated in the loop expan-

sion: I' = S+ hF(&) + h2F(2) + . . The h~ term
contains contributions not only from the genuine n-loop
diagrams but also from the lower loop diagrams includ-
ing the counterterms. We can expand the nth term I'(")
according to the dimension

r&"& = r,'"'[y]+ r,'"&[y, v]+ r,'"&[c,K]+". .

Here again we are counting the dimension only of the
fields and derivatives. The first dimension-0 term ro~"l

can contain only the dimensionless field P' without
derivatives. The two dimensions of the second term Fz"
is supplied by derivative and/or the gauge field V'„. The
BRS source field K carries dimension 4 or 3, and hence
it can appear only in I'4" and beyond: the dimension-4

term I'4 is at most linear in K, while the dimension-

6 term rs" can contain a quadratic term in K", the
BRS source of the hidden gauge boson V„. To calcu-
late r&"l, we need to use the "bare" action, (So)„
S [(C0)„,(Ko)„;(ao)„], where the nth-loop-order bare
fields (Co)„, (Ko)„, and parameters (ao) are given by

(e.) = c+n6c&'&+ +n"6c~"l

(K.)„=K+ n6K~'l + " + n"6K~"l,

(a,)„=a+ n6a&'l + + n"6m&"&.

Let us now prove the following by mathematical in-
duction with respect to the loop expansion parame-
ter n: (1) I'0" (P) = 0. (2) By choosing suitably
the nth-order counterterms bC("), bK("), and $g.( ),
I'2" [P, A] and the K-linear terms in I'4 [4, K] can be
made to vanish; I'2" [P, V] =I'4" [O', K]~K i;„, , = 0. (3)
The field reparametrization (renormalization) (O', K) —+

[(Cs)„,(Ko)„] is a "canonical" transformation which
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leaves the * operation invariant.
Suppose that the above statements are satisfied for the

(n —1)th-loop-order effective action r~" l. We calculate,
for the moment, the nth-loop effective action I'("} using
the (n —1)th-loop-level bare action (So)„ i, i.e. , without
nth-loop counterterms. We expand the 6" terms in the
WT identity S*r~"l = —

2 P&" i r~'l * r&" 'l according
to the dimensions as in Eq. (8). Then using the above
induction assumption, we find S4 * I'0" + S2 + r2"
(dim 0), S4 + I'2" + Sq * I'4" ——0 (dim 2), and S4 +

r4 +S2~r = 0 (dim 4). These three renormalization(-)
'

(-} ='

equations give enough information to determine possible
forms of I'0", I'2", and I'4" ]K i;„, , (the K-linear term
in I'4" ) which we are interested in.

First, the dimension-0 part of the renormalization
equation reads 6~ra" ——0. Since there are no invariants
containing no derivatives, we can immediately conclude
I'0" ——0, and hence our statement (1) follows.(") =

Next, we solve the dimension-2 and the dimension-4
parts of the above renormalization equations. It is con-
venient to define the BRS-like transformation 6& on the
fields 4 by 6r', —(6I'4" /6K) &@. Then these equations
read

+ ~ps2 = 0j(n)

(n)

a~r4 +ZrS4+ =0(„), bI'6 bS2

6r O'= P6gyC',

6~/'= (C ([W„F]+ PW, ) + C' [W, , F])P',
6i-V„= act„C + P6~V„+p6~(V„—V„),

(12)
(1S)

(14)

where n, P, and p are constants, V„=—(I.VI,„(1—iB„(1..

(z~ + (L ~ R) and F—:F'(P)B/BP', with F'(P) being a
certain dimension-0 function. Note that 6r V„' = 6r,C' =
0, since the external Gsiob~i-gauge fields V„' and their
ghosts C' are not quantized and hence their BRS source
fields K:", and l'.; appear only in the tree action.

Using 6z thus obtained, we next solve the above WT
identity Eq. (10) and easily find

r ," =A,G, [y, v] —
~
Fs, +~v„s, ~,

(„) t' - 6
" 6V~ (15)

where A2GI is a dimension-2 gauge-invariant function of
P' and V„.

The solutions are combined into a simple form

r,'"&+ r,'"' = A, G, [y, v] —s*Y
K-linear

A tedious but straightforward analysis [15] of the K-
linear term in Eq. (11) determines the general form of
the I'4 ~K i;„,» and I's ~K-qz@Qzzf&c terms: the solution(n) (n)

for I'4 ~K i;„e» or equivalently 6r, is given by

up to irrelevant terms (dimension-6 or K-independent
dimension-4 terms), where the functional Y' is given by

d x K,F'(P) + aK"V„

+PL~C + Pf b,K"Kb„C' . (17)

Now, we prove our statements (2) and (3) in the above.
We have calculated the above effective action r~"~ unth-
out using nth-loop-level counterterms 64("), bK("), and
ba("). If we include those, we have the additional contri-
bution given by

gi (p')
gvmvr(P ~P~~=P~~= ) pz p

2 2 2 0h
(19)

is actually an exact low energy theorem valid at any loop
order. Of course, this theorem concerns off-shell quan-
tities at p2 = 0, and hence is not physical as it stands.
However, as Georgi [7] discussed, the consequence of HLS
is physical when the vector meson can be regarded as
light (e.g. , in the "vector limit" ). Suppose that the vec-
tor mass mv ——ag f is sufficiently small compared with
the characteristic energy scale A2 of the system, which is
customarily taken as Az 16ir2f . Then we expect that
the on-shell value of gv/gi at p2 = m2& can deviate
from the left-hand side of Eq. (19) only by a quantity
of order m&/A ag2/16n2, since the contributions of
the dimension-4 or higher terms in the effective action I'
(again representing all the loop effects) are suppressed by
a factor of p /A at least. Therefore as far as the vector
mass is light, namely, when either a or g~/167r2 is small,
our theorem is truly a physical one. In the actual world of

ar~"l = 6C ~"~ + 6K~"l + 6a~"~
64 6K Ba'

where S[4,K;a] is the tree-level action. So the true
nth-loop-level effective action is given by I ("}+ LI'("):—
I't"t l. The tree-level action S2 is the most general gauge-
invariant dimension-2 term, so that the AqGi[g, V] term
in Eq. (16) can be canceled by suitably chosen counter-
terms, 6a~"l &~. The second term —S*Y in Eq. (16) just
represents a "canonical transformation" of S generated
by —Y. Therefore we choose the nth-order field counter-
terms bC(") and bK( ) to be equal to the canonical trans-
formations of 4 and K generated by +Y; 64'&"~ = C *Y,
bK("} = K + Y. Then the first and the second terms in
Eq. (18) just give S * Y and precisely cancel the second
term in Eq. (16). Thus we have completed the proof of
our statements (2) and (3).

In conclusion, we have shown in the covariant gauges
that our tree-level dimension-2 action J d 2:(Z~ + aZv),
if written in terms of renormalized parameters and fields,
already gives the exact action I'2 including all the loop
effects. This form of the effective action (in particular
the Z~ part) implies that the previously derived relation
[5,6]
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@CD, the p meson mass is not so light (ag2/16'~ 1/2)
so that the situation becomes a bit obscure. Neverthe-
less, the fact that the KSRF I relation g~/g~ = 2f2
holds on the p mass shell with good accuracy strongly
suggests that the p meson is the hidden gauge field and
the KSRI' I relation is a physical manifestation of our
lo~ energy theorem.

Some comments are in order.
(1) Our conclusion in this paper remains unaltered

even if the action S contains other dimension-4 or higher
terms, as far as they respect the symmetry. This is be-
cause we needed just (S * I')2 and (8 * I')4 ~K i;„, , parts
in the WT identity to which only S~ and K-linear part
of S4 can contribute.

(2) When we regard this HLS model as a low energy ef-
fective theory of @CD, we must take account the anomaly
and the corresponding Wess-Zumino-Witten term I'~z~.
The WT identity now reads I'*I' = (anomaly). However,
the RHS is saturated already at the tree level in this ef-
fective Lagrangian and so the WT identity at loop levels,
which we need, remains the same as before, The WZW
term I'wzw or any other intrinsic-parity-odd terms [16]
in S are of dimension 4 or higher and hence do not change
our conclusion as explained above.

(3) Since the low energy theorem concerns off-shell
quantities, we should comment on the gauge choice. In
the covariant gauges which we adopted here, the Gzi b i

and H&, i BRS symmetries are separately preserved. Ac-
cordingly, the V& field is multiplicatively renormalized

(recall that 6V„" = V„*Y = a;V„), and the above (off-
shell) low energy theorem Eq. (19) holds. However, if
we adopt Rf gauges (other than Landau gauge), these
properties are violated; for instance, Qcl&P or the exter-
nal gauge field V~ gets mixed with our V& through the
renormalization, and our ofF-shell low energy theorem Eq.
(19) is violated. This implies that the V„ field in the
B~ gauge generally does not give a smooth oB-shell ex-
trapolation; indeed, in B~ gauge with gauge parameter
n = 1/(, the correction to g~/g~ by the extrapolation
from p = m to p = 0 is seen to have a part propor-
tional to agz/16~, which diverges when e becomes very
large. Thus, in particular, the unitary gauge [17], which
corresponds to o. —+ oo, gives an ill-defined oE-shell field.

(4) Our argument is free from infrared divergences at
least in Landau gauge. This can be seen as follows. In
this gauge the propagators of the NG bosons, the hid-
den gauge bosons, and the FP ghosts (after rescaling the
FP antighost C into f2C) are all proportional to 1/f2
in the infrared region. Therefore, a general L-loop di-
agram, which includes V4 dimension-4 vertices and K
BRS source vertices, yields an amplitude proportional to
(1/ fz) ' [l2]. Thus, from dimensional consid-

eration we see that there is no infrared contribution to
Fe [P] Fg [P V], and I'4" [C, K] ]K i;„«,. In other co-
variant gauges, there appears a dipole ghost in the vector
propagator, which is to be defined by a suitable regular-
ization.
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