
VOLUME 71, NUMBER 9 P H YS ICAL REV I EW LETTERS 30 AUGUST 1993

Topological Closed-String Interpretation of Chem-Simons Theory
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The exact free energy of SU(N) Chem-Simons theory at level k is expanded in powers of (N+k)
This expansion keeps rank-level duality manifest, and simplifies as k becomes large, keeping N fixed (or
vice versa) —this is the weak-coupling (strong-coupling) limit. With the standard normalization, the
free energy of the three-sphere in this limit is shown to be the generating function of the Euler charac-
teristics of the moduli spaces of surfaces of genus g, providing a string interpretation for the perturbative
expansion. A similar expansion is found for the three-torus, with diAerences that shed light on contribu-
tions from diA'erent spacetime topologies in string theory.

PACS numbers: 11.17.+y, 11.15.Pg

The perturbative expansion of any quantum field
theory (QFT) with fields transforming in the adjoint rep-
resentation of SU(N) is a topological expansion [ll in
surfaces, with N playing the role of a handle-counting
parameter [2]. For N large, one hopes that the dynamics
of the QFT is approximated by the sum (albeit largely in-
tractable) of all planar diagrams. The topological classi-
fication of diagrams has nothing a priori to do with ap-
proximating the dynamics with a theory of strings evolv-
ing in spacetime.

Gross [3] (see also Refs. [4,5]) has shown recently that
the large N expansion does actually provide a way of as-
sociating a theory of strings in two-dimensional QCD.
Maps of two-dimensional string world sheets into two-
dimensional spacetimes are necessarily somewhat con-
stricted. What one would like is a QFT with fields trans-
forming in the adjoint representation in d ) 2, which is at
the same time exactly solvable. One could then, in prin-
ciple, attempt to associate a theory of strings with such a
QFT by exhibiting a "sum over connected surfaces" in-
terpretation for the free energy of the QFT. There is no
guarantee that such an association will exist.

Chem-Simons theory in three dimensions is precisely
such a rara avis among QFTS. It is described by a func-
tional integral

Z [M] = DA exp(iklcs),

with

Ics=(1/4tr) d xtr[AdA+ 3 A ].

the defining representation. In the standard large N lim-
it, k ~N. The functional integral will not be used in the
following. Instead, I shall exploit Witten's [6] relation of
Chem-Simons theory to knot theory and conformal field
theory.

I shall show in this Letter that the exact free energy of
SU(N) Chem-Simons theory at level k has an expansion
that admits a string interpretation. This expansion is ob-
tained in two steps, the first an expansion in (k +N)
and the second a "double-scaling" limit [7]. The expan-
sion in (k+N) is natural from the point of view of rank-
level duality [8]. When M is the three-sphere, S, the
scaled free energy turns out to be the generating function
of the Euler characteristics of the moduli spaces of sur-
faces with g handles [9]. I shall also compute the expan-
sion when M is the three-torus, T . This can be inter-
preted as a sum over surfaces with one boundary (or
puncture). An important comment: The normalization
of the partition functions used in this Letter is that used
in Chem-Simons theory, and may be inappropriate for
string identifications. For example, comparison with
Casson's invariant suggests that the free energy on S
should be chosen to vanish.

To start, Witten [6] showed that

Z[S'] =So p,

with the normalization Z[S &&S'] =1. Here S~ is the
modular transformation matrix representing the action of
the modular group SL(2,Z) on the characters of the
SU(N) Kac-Moody algebra at level k:

Here M is a closed oriented 3-fold, and the gauge group
is assumed simply connected so the principal 6 bundle on
which A is a connection can be trivialized. The trace is
normalized so k is an integer. For G =SU(N), the case
considered in detail in this Letter, the trace is taken in

' 1/2~

Z[S,N, k] =(k+N) t + ~ 2 i N+k

The characters of the Wess-Zumino-Witten model are
known, so S can be determined without resorting to com-
putations with the functional integral definition of the
Chem-Simons theory. Thus for SU(N) [10],we have

The expansion and scaling limit undertaken below lead to a result that can be deduced simply by taking a large k limit
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of Z[S,N, k]. The longer route makes contact with the idea of double scaling [7] and keeps rank-level duality manifest
in the scaling limit. Define M=k+N, and x=N/—M. The rank-level duality [8] under an interchange of N and k, or
equivalently x 1

—x, is easily checked:
r 1/2

Z[S',N, I ]
Z[S,k, N]

The normalization of the partition functions could be changed to give exact duality; however, the normalization we use
is natural from the point of view of Kac-Moody algebras. The planar term in the large N expansion with x fixed is

1

lnz-N „dy(1 —y)ln2sin(xyx),

obtained by Camperi, Levstein, and Zemba [11].
Recall sin(nz) =zz+„-( (1 —z /n ). It follows that

Z[S N, k] =M —[(Mx) —))/2(2~) Mx(Mx —) )/2G(Mx + 1)exp( —Fo)

where G is Barnes' G function [12],and

Mx —1

F,=- g g g (Mx J)1

n 1 j 1 m 1 nM

«(2 ) Mx —(

The sum over j can be written in terms of the Bernoulli polynomials [12],

pi, (z) —=z ——z" '+ C28) z —C482z + up to z or z
2

which satisfy

L —
1

ZJj~1 Pl

After some rearrangement, we arrive at

m 1

g(2m) x +
g M2 zk( )kB 2k —

1 d
1

sinxx
(2m+1)(2m+2) 2k! dx 2k z nx

The asymptotic behavior of Barnes' G function is

3z z I
OO

lnG(z+1) ——In21t — + lnz — lnz+ g ( —)" ' "
z

2 4 2 2,-2 2r(2r —2)

We can now put all the terms together, noting that the lnzx terms from FD cancel against terms coming from the G

function. This renders the rank-level duality manifest in the higher genus contributions. The end result, if we fix
N—=Mx, and take M t ~, is

F[S,N] =
z lnx+N [ —' ——,

' In2xx]+ lnN+ g N "(—)~
2 k=2 2k(2k —2)

The (virtual) Euler characteristic of surfaces with g handles [9] is

zg =(—)' Bg

2g(2g —2)

Thus, even including the scaling violations evident in the N lnx term [13],the free energy we have computed is precise-

ly the generating function of Euler characteristics. Thus we have found a string interpretation of the free energy of
Chem-Simons theory, since the Euler class is a natural measure on moduli space, and one way of characterizing string

theories is to give measures on moduli spaces for all genus.
I turn now to the three-torus T3. Witten [6] showed that Z[T,N, k] counts the number of integrable irreducible

highest-weight representations of the a5ne Kac-Moody algebra at level k. These are in one-to-one correspondence with

Young tableaux with at most N —1 rows and at most k columns. We thus find

Z[T', N, k] =
kB k, N
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where 8 is the Euler beta function. Observe that Z[T,N, k]//Z[T, k, N] =x/1 —x, similar to the analogous ratio for
5 . The 8 function can be written as

B(M(1 x) Mx) xMx —i/2(1 x) M(l —x) —
I/2(2&/M) i/2expC(M x)

with

C(M, x) =2 (tM ') +tM '(1 —x+x )arctan

In the limit Mx=N fixed, M ~, using B/, =4k fo dt t '(e ' —1) ', and arctan(z) =z —z /3+z /5 —.
(z =0), we find

F[T,N, k] ———ln
1 N
2 2'

OO

—N(1 —lnx)+ g ( )"N—' "
k 2k(2k —1)

Thus the expansion should be interpreted as a sum over surfaces with one puncture or hole. However, the Euler charac-
teristic of surfaces with m punctures and g handles is

I (2g —2+ m)
I-(m+I)I (2g —2) ''

thus the coe%cient of N' zk is not as we would have expected for surfaces with a simple puncture.
Observe the lnN term in F[T ], the only term that does not come from a surface with just one puncture. Like the odd

powers of N found in F[T ] and the lnN term in F[S l, it is not what we would expect from general arguments [1].
These general arguments, however, apply only to the perturbative evaluation of large W functional integrals. In the
present case (assuming a normalization where F[S ] =0, since S has only a trivial flat connection), the functional in-

tegral must be decomposed into a finite-dimensional integral over flat connections (dm) and a functional integral over
Auctuations about these Aat connections:

DAexp(ikIcs[A]) = dmexp(ikIcsfm]) Daexp(ikIFs' [a;m]).

The moduli space of flat connections depends on N, and

one must also evaluate the value of the action at these Aat

connections. These conceptually simple steps cannot at
this time be carried out explicitly. However, it should be

clear that anomalous N dependence should be expected
on manifolds (such as T and S XS') with nontrivial

moduli spaces of flat connections.
Why is the appearance of a boundary natural'? Every

3-fold can be obtained from S by cutting out a tubular

neighborhood of links embedded in S, and then glueing

the tubular neighborhood back after acting on its bound-

ary by a diffeomorphism —this is called surgery. T can

be obtained from S by surgery on Borromean rings em-

bedded in S . We would ideally wish to associate terms

in the perturbative expansion on T with surfaces whose

boundaries are the reglued Borromean rings in S . How-

ever, the Borromean rings are linked and there is no siin-

ple way (without self-intersection) that one can make

surfaces with Borromean ring boundaries.
It is of great interest to understand the Chem-Simons

string theory for diA'erent 3-folds since it may teach us

how to obtain a formulation of string theory independent

of spacetime topology. It should be possible to explicitly
compute the free energy on many simple 3-folds following

the general results found by Witten [6]. For example, if
one defines a function

:-(s)=—g So,',

I

where the sum runs over all integrable irreducible highest
weight representations, then "(2g—2) is the partition
function on Ps XS '. Jeffrey's [14] Poisson resumma-
tion method should be useful in this analysis. For some
idea of the computations involved, see Ref. [15]. Witten
gave an open string interpretation to Chem-Simons
theory [16]. The appearance of the Euler characteristics
in the present work seems unrelated to the explicit
geometry of his construction, but this merits further in-

vestigation.
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