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Average Entropy of a Subsystem
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If a quantum system of Hilbert space dimension mn is in a random pure state, the average
entropy of a subsystem of dimension m ( n is conjectured to be S,„=Q„" —„— and is
shown to be = lnm —2„ for 1 (( m & n. Thus there is less than one-half unit of information, on
average, in the smaller subsystem of a total system in a random pure state.

PACS numbers: 05.30.Ch, 03.65.—w, 05.90.+m

One natural way to get entropy, even for a system in
a pure quantum state, is to make the coarse graining of
dividing the system into subsystems and ignoring their
correlations. For example, suppose a system AB with
Hilbert space dimension mn and normalized density ma-
trix p (a pure state p = ~Q)(g~ if p = p, which is equiv-
alent to Trp = 1) is divided into two subsystems, A and
B, of dimension m and n, respectively. (Without loss of
generality, take the first subsystem, A, to be the one with
the not larger dimension, so m ( n. ) The density matrix
of each subsystem is obtained by the partial trace of the
full density matrix p over the other subsystem, so

pA = trap

p& = trAp.

The entropy of each subsystem is

(1)

(2)

SA = —trpA ln pA, S~ = —trp@ ln p~.

SA + Spy & SAN) = —trpln p.

In fact, the three entropies SA, S~, and SA~ obey the
triangle inequality [1], so if the entire system AB is in

a pure state, which has SA~ ——0, then SA ——S~, which

Unless the two systems are uncorrelated in the quantum
sense (which corresponds to the case that p = p~ I3 p~),
the sum of the entropies of the subsystems, which is a
coarse graining that ignores the correlations, is greater
than the Bne-grained entropy SA~ of the total system:

is an immediate consequence of the well-known fact that

pA and p~ then have the same set of nonzero eigenvalues.
It may be of interest to calculate how much entropy one

typically gets by this coarse graining [2—5]. For example,
what is the average, which I shall call

S „—:(S~),

of the entropy S~ over all pure states p = [@)(Q~ of the
total system? Here the average is defined with respect to
the unitarily invariant Haar measure on the space of unit
vectors [Q) in the mn-dimensional Hilbert space of the
total system, which is proportional to the standard geo-
metric hypersurface volume on the unit sphere S
which those unit vectors give when the mn-complex-
dimensional Hilbert space is viewed as the 2mn-real-
dimensional Euclidean space [2]. Note that since S~ is
a nonlinear function of the density matrix pA, the av-
erage (S~) of this entropy function is not the same as
this function evaluated for the average density matrix

(p~) = I/m (the identity matrix acting on the subsystem
Hilbert space, divided by its dimension m), which would
be an entropy of S „=ln m, the maximum entropy the
subsystem A can have. It is convenient to define the av-

erage information of the subsystem as the deficit of the
average entropy from the maximum,

I „=—S „—(SA) = lnm —S

Lubkin [2] calculated that, in my notation,
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(«p~) =

m —12

S „=lnm-
2mn+ 2'

m+n and Pagels [3], apparently unaware of Lubkin's work, as I
mn+ 1' was also when I did my calculations, made progress from

a slightly different angle by calculating the probability
and hence he estimated that for m && n distribution of the eigenvalues of p~ for random pure

states p of the entire system. The result, after inserting
(8) the differentials that were used in the calculation [6] but

which were not given explicitly in the paper [3], and after
However, he was unable to calculate S~ ~ exactly. Lloyd changing variables to the eigenvalues p, , is

P{p1 . pm)dp1 ' dpm ~ ~ ' 1 ) p9 (pi pj ) (pk dpk)'
i=1 1(i(j(m k=3.

The normalization constant for this probability distribu-
tion is given only implicitly by the requirement that the
total probability integrate to unity. Although they also
did not calculate S „exactly, Lloyd and Pagels [3] came
to the same qualitative conclusion as Lubkin [2], that for
m « n the typical entropy of the (much) smaller subsys-
tem is very nearly maximal.

Here I shall show that for 1 && m & n

mS „=lnm- 2n'

which agrees with Eq. (8) above from Lubkin [2] in the
region of overlap but does not require m « n,. An exact
calculation for m = 2 and m = 3 led me to the tentative
conjecture that the exact general. formula is

1 m 1'--= )- k- 2.k=n+1
which rather remarkably agrees with what I later calcu-
lated exactly for m = 4 and m = 5, so I now think it
would be surprising if it were not always correct, though
I have not yet found a proof for this conjecture. Purther-
more, for large n„ the asymptotic expansion for Eq. (11)
ls

m' -1 = m'j -1S~„=Inm — +) Bg~2m„- j 2gm2jn2j i

j=1
where Bgj are the Bernoulli numbers, which its both
Eqs. (8) and (10) when n )) l.

To calculate S~ „, it is convenient to define q, = rp,
and

Q(qi . q )dqi . dq

Then

(qi —q, ) (e 'q," dq, ) ~ e "r " 'P(pi, . . . , p )dpi. dp~ idr.
41(i(j(m

(13)

= (SA) = —
I ).p' »p'

l &(pi ",p )dp& ' ' dp &= M(rnid—+ 1)—i f(P, , q, ln q, )Qdqa . dq~

1 ) mn Qdqq . dq
(14)

using, for integral N,

One can readily calculate by hand that
2n —1

1"-= )- xk=n+1
(16)

which, for example, gives S2 2
——1/3, slightly less than

one-half S „=ln 2 in that case, and

1 1) k n'
k=n+i

(17)

e *x lnxdx= N!g(N+1)
( N

= I'(N + 1) = N! ) ——t.", (15))'
where C is Euler's constant, which, after some algebra,
one can see cancels out from the final expression for S~ „,
leaving a rational number for each pair of integers m and
n.

both of which are fit by Eq. (11) which they suggested
as a generalization. For m ) 3, the expression for Q
is too cumbersome for Eq. (14) to be readily evaluated
by hand, but I was able to calculate it for m = 4 and
m = 5 with the aid of MATHEMATlcA 2.0, after putting
in by hand the correct value of the integral of Eq. (15),
which MATHEMATICA 2.0 evaluates incorrectly. Both of
these values of m also fit Eq. (11). For m ) 5 I ran into
another apparent bug in MATHEMATICA 2.0 which I have
not yet figured out how to circumvent, but the likelihood
that the agreement of my calculations of S4 „and S5 „
with Eq. (11) is due to accident or error seems less than
the likelihood that my conjectured Eq. (11) is in fact
exact for all m.

However, because I have not yet found any proof of
Eq. (11),it appears worthwhile to derive an approximate
expression for S „ for large m and n, which I now do.
In this limit,
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gi QiS „=—) p, in@, = —) r ri=1 x=1
(18)

for p, 's which maximize P(pi, . . . , p ) or q, 's which max-
imize Q(qi, . . . , q~). Now

—lnQ(qi, . . . , q~) = — ) ln(q, —q, )'
l(i&j(m
m

+) [q, —(n —m) lnq, ] (19)

o.(x)dx
x —x' (20)

is the potential energy for m unit charges on the q line in
two dimensions due to their mutual electrostatic repul-
sion, a uniform external unit electric field in the negative
q direction, and another superposed external electric field
of strength (n —m)/q in the positive q direction from
n —m external charges fixed at the origin.

For large m and n, we can also make the continuum

approximation of mo (x)dx "charges" (eigenvalues of the
"most typical" density matrix pz) in the range dx of the
rescaled variable x = q/m, so o is a normalized linear
density (with respect to x) of eigenvalues. The equilib-
rium condition (maximization of Q or minimization of
the electrostatic energy —ln Q) gives the integral equa-
tion, with iu—:(n —m)/m,

~( )
1 P(y)d

p —x

the inverse Hilbert transformation is given by

1
~(*)=--

jr

1 —y' f(y)dy
1 —x y —x2 + ) (22)

where the principal parts are taken for both integrals,
and where

4(y)dy (23)

is an arbitrary constant.
Applying this theorem to our problem, singularities

can be avoided at a and b if

tion, and on others the values of its normal derivative"
[8]. Here we want the charge density, which is (minus)
the normal derivative of the electrostatic potential due to
cr(x) just above the real axis between a and b, given the
tangential derivative for a ( x ( b (which must cancel
the tangential derivative of the given external electro-
static potential for the charges to be in equilibrium) and
the fact that the normal derivative is zero elsewhere just
above the real axis (and is zero at infinity), with D being
the upper half Euclidean plane. In our special case, the
solution is given by the following theorem [9,10]: Given
the finite Hilbert transformation

a = 2 + iu —2y 1 + iu, b = 2 + iu + 2i/1 + iu (24)

Then the charge density (normalized density of eigenval-
ues of the typical p~) is

Q(x —a)(b —x)

(25)

for x' in the range where o(x') ) 0, say 0 & a ( x' ( b

for some constants a and b that would depend on w. This
is a Fredholm equation of the first kind [7], but with the
troublesome feature that the right hand side is only given
for part of the real axis, a ( x' ( b, where o (x') ) 0. —x2+22+iux —iu2

The solution can be found as a special case of the u(x) =
Riemann-Hilbert problem: "to find a function, harmonic
in a certain plane region D, assuming that on some parts
of its contour we are given the values of the required func- This gives, under our large (m, n) approximation,

b 2
S~ „ inn — cr(x)x lnx dx = inn —— dy ygl —y21n(2+ iu+ 2i/1+ iuy)2n 7r —1

2 2"
= ln n —— d8 sin 8 ln gl + 2r cos 8 + r2,

7t
(26)

with

n= cos8, r —= v'1+tu—: —) l. (27)
m

The argument of the logarithm of the last integral is the
distance from a point on the unit circle in the (y, z) plane
to a point at distance r along the negative real axis from
the center. Thus the integral can be viewed as yet an-
other electrostatic potential in two dimensions, at y = —r
from a sin 8 charge distribution around the unit circle,
which is a monopole plus a quadrupole, and this works
out to give

mS inn —21nr — = lnm-m) A 2r2 2n
(28)

I,„= +Oi
m t' l 1
2n qmn) ' (29)

which is Eq. (10).
Thus we see that when the dimensions m and n of

both subsystems A and B are large, and when the joint
system is in a random pure state, the smaller subsystem
A (with dimension m) typically has nearly maximal en-

tropy lnm. The average deviation or information in the
smaller subsystem is
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and is always less than one-half of a natural logarithmic
unit. That is, for a typical pure quantum state of a large
system, the smaller subsystem is very nearly maximally
mixed, showing little signs that the total system is pure.

Another way of putting it is to say that if the subsys-
tems A and B were broken up into tiny sub-subsystems,
which typically would each be very nearly maximally
mixed, there would be virtually no information in the
sub-subsystems considered separately. For quantum in-
formation, the whole system contains more information
than the sum of the information in the separate parts,
and in this case almost all the information giving the
precise pure state of the entire system, ln m+ ln n units,
is in the correlations of the sub-subsystems. The above
result shows that for a typical pure state of the entire sys-
tem, very little of the information, roughly m/2n unit, is
in the correlations within the smaller subsystem A itself,
roughly 1nn —lnm+ m/2n units is in the correlations
within the larger subsystem B itself, and the remaining
roughly 2 ln m —m/n units of information are in the cor-
relations beween the larger and smaller subsystems.
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