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Formation of a Coherent Heavy Electron State in the Anderson Lattice Model
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We present self-consistent calculations for the self-energy, thermodynamic potential, and magnetic
susceptibility of the 2D asymmetric Anderson lattice Hamiltonian, in the Auctuation exchange ap-
proximation. For parameters that yield a large local moment, a narrow peak at the Fermi energy
grows out of an otherwise smooth density of states as the system is cooled. The height of the peak
reaches a maximum and then decreases, signaling the onset of coherence. The susceptibility shows
a similar temperature dependence.

PACS numbers: 71.28.+d, 71,20.—b, 75.20.Hr

The f electrons in heavy-electron metals undergo an
unusual transformation with decreasing temperature, ap-
parently changing continuously from a lattice of inde-
pendent local moments exchange-coupled with a band of
conduction electrons, to an extremely narrow hybridized
band of highly renormalized itinerant quasiparticles [1].
Among the issues raised by this scenario are the identi-
fication of the processes controlling the formation of the
coherent itinerant state, the relation of this transforma-
tion to the compensation of local f moments in the single

(or dilute) impurity Kondo problem, and the character
of the low-temperature quasiparticles.

The Anderson lattice model is believed to provide a
paradigm for this transformation. In its simplest form,
the model contains a single spin-degenerate f level of
energy ef at each lattice site and a tight-binding conduc-
tion band with nearest-neighbor hopping matrix element
t Condu. ction and f electrons on the same site hybridize
with energy V, and two f electrons on the same site have
Coulomb energy U. The Hamiltonian is

H= —t ) c, cs +) (V(f, c, +c, f, )+efn, — Ircr(n,'. +n, ))+U) n, Tn,
(i,j)~ XC7

where c, (f, ) annihilates a conduction (f) electron at
site i with spin o, and h describes the coupling of the
electron spins to a homogeneous magnetic field.

Much work on the Anderson lattice Hamiltonian has
focused on the limit of infinite U, using methods origi-
nally developed for the single-impurity Anderson model
[2]. The observation that thermodynamic properties of
the single impurity problem are reproduced accurately
by second-order (in U) perturbation theory for the self-

energy [3] has aroused renewed interest in perturbation
theory for the lattice model.

One approach to perturbation theory for the self-
energy is to make a straightforward expansion in U, with
diagrams evaluated using the U = 0 Green's function.
Another approach is to expand in terms of skeleton di-
agrams evaluated with the Green's function containing
the approximate self-energy being calculated [4]. In ad-
dition to relative computational simplicity, the first ap-
proach has the virtue that it includes all contributions of
a given order in U, which prevents errors due to cancel-
lations between included and excluded terms of the same
order. The second approach has the advantage that it can
describe situations where the difFerence between the in-
teracting and noninteracting excitation spectra matters,
and if the self-energy is calculated from a "conserving
approximation, " the self-consistent solution will respect
all symmetry derived conservation laws [5]. There is no a

! priori way to choose between these approaches, but the
dramatic changes with temperature in the low-energy ex-
citation spectra of the heavy-electron metals suggest a
self-consistent approach. Previous workers have recog-
nized that the Green's functions used to calculate the
self-energy must include the Hartree self-energy (which
shifts the bare f level), but have not treated other con-
tributions self-consistently [6].

We have carried out fully self-consistent calculations
for the 2D asymmetric Anderson lattice Hamiltonian
in the Huctuation exchange approximation (FEA), be-
ginning from the diagrammatic expansion for the ther-
modynamic potential in terms of the fully renormalized
Green's function G and self-energy Z [4],

A(T, p, , h) = —Tr [ZG + ln( —Go
' + Z)] + 4[G] . (2)

Here Tr denotes a generalized trace over all arguments
of the Green's function, t 0 is the Green's function of
the noninteracting system, and C [G] is a set of Feynman
diagrams whose functional derivative with respect to t

generates the skeleton-diagram expansion for Z. UVith

the spin-quantization axis along the Geld, the Green's
functions and self-energies are spin diagonal, and because
the Hubbard interaction acts only between f electrons,
4 is a functional of the f-electron Green's function Gy
alone and only the f-electron self-energy Zf is nonzero.
This greatly simplifies the solution of Dyson's equation
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for G [7].
In the FEA, C is [8, 9]
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C = 4U[nf —(nT —n&) ]+ 2Tr[ln(1 —IITTIIlt)]

+ Tr[ln(l —
IIEET) + IIi T + ~IIll]

+T [ln(1+ II») —II» + —,'II„'„], (3)
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which generates Hartree-Fock and second-order self-
energies, plus contributions from exchanged longitudinal
spin fluctuations and density fIuctuations, transverse spin
fluctuations, and singlet pair fluctuations. The suscepti-
bility bubbles are given by

II» (r, ~) = UG f T (r, r)Gf J (1, 1 ),
II (r, ~) = —UGf (r, ~)Gf (—r, —~) .
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For the results presented below, the contribution to C

from spin fluctuations is within 10% of that from the
second-order diagram; contributions from pair fIuctua-
tions and from density fIuctuations are smaller by factors
of roughly —1/4 and —1/10, respectively.

We calculate Zf using an algorithm originally devel-
oped for the Hubbard model [10], on a 32 x 32 lattice
with spot checks on lattices as large as 128 x 128, and
using a frequency cutoff at least 6 times the unhybridized
conduction band width, TV = St.

The magnetic susceptibility y(T) was found from the
slope of Tr[cr, G] versus h for small fields (typically 0.0058
and 0.0lt); this calculation of y(T) is equivalent to
solving an integral equation for the response function
with irreducible vertices comprising particle-particle and
particle-hole bubble chains and Aslamazov-Larkin-type
diagrams [11).

The retarded self-energy on the real axis was obtained
from N-point Pade approximants [12], and used to can-
struct the spectral functions and quasiparticle dispersion
relations along symmetry directions in the Brillouin zone.
The densities of states were found from Pade continua-
tions of the k-summed imaginary-frequency Green's func-
tions. These self-energies and densities of states are in-
sensitive to variations in the order of 'the approximant
over a wide range of N, and satisfy sum rules to better
than 1% accuracy.

For the calculations reported here, we used p = 1.8t,
V = t, and ef = 1.5t, where ef = ef + 2U(nl + nl)
is the (h = 0) Hartree-renormalized f level. With these
parameters the total f density and c density are approx-
imately nf = 1.05 and n, = 1.52, and vary by less than
2% for 0 & U & 4t at fixed temperature and by approx-
imately 0.5% for 0.002 & T/t & 0.25 at 2t & U & 4t;
difFerences between temperature dependences at fixed ef
and at fixed ef are thus insignificant. We note in passing
that for W 1 eV our lowest temperature corresponds
to 3 K. The noninteracting density of states is shown
in Fig. 1(a) (here and subsequently, energies are mea-
sured from p). The Fermi energy sits in a region of large
density of states (DOS), but is not coincident with any
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FIG. l. (a) The noninteracting total density of states with
ef = 1.5t, U = t, and p = 1 8t (b) Th.e i.nteracting total
(upper solid) and f-electron (dashed) densities of states with
U = 2t and T = t/64, and the f-electron density of states
(lower solid) for T = t/4 The inse. t shows the f-site local
spin (~ ) and charge (o) fluctuations as a function of U. Here
and in all subsequent figures the unit of energy is t, energies
are measured from p, , and the DOS are for a single spin.

sharp structure.
The f-site local spin and charge fluctuations can be

found from the density of doubly occupied sites,

Df

2 2O~+ nf

= (n, T n, t),f f

= ((nf& —n~&) ) = nf 2Df,
= ((nfT + nfl) ) = nf + 2 Dg,

and we get Dy from a numerical U derivative of A. The
inset to Fig. 1(b) shows o z& and o c as a function of U
for T = t/64. In the remainder of this paper we focus
on U = 2t and U = 4t, which yield large local moments.
We note that the corresponding single-impurity Kondo
temperatures are T~ = t/30 and T~ = t/250; the latter
is near the lowest temperature accessible to our calcu-
lations for U = 4t. Self-consistency is essential to the
results presented here: for T = t/32, the FEA evaluated
with Gp is unstable for U ) 0.6.

Figure 1(b) shows the total and f densities of states
for U = 2t and T = t/64. The noninteracting hybridiza-
tion gap has disappeared on account of the large (and
essentially temperature independent) scattering rate for
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FIG. 3. The spectral function (a) at X as a function o' nof
energy for T decreasing (corresponding to peak heights in-
creasing) by factors of 2 between t/4 and t/512; and (b) at
s = 0 as a function of k along I'X for T = t/512 (~), t/256
(E), t/128 ( ), t/64 (o), and t/32 (o).

FIG. 2. (a) The f-electron density of states at s = 0 for
U = 2t (A) and U = 4t (+) together with the total and f
electron spin susceptibility for U = 2t (~ and o) and U = (= 44~0
and x). (b) The bare (dashed) and renormalized (solid) band
structures for T = t/32 along high-symmetry directions in the
Brillouin zone. The small arrows indicate the approximate
location of the renormalized Fermi surface.

with T ( t/128. Figure 3(a) shows the temperature de-
pendence of the spectral function A(k, s') at the X point,
which is well away from the Fermi surface along I X.
It is apparent that this point (and presumably all other

lpoints along I'X' as well) contributes substantial spectra
weight at s = 0 for all temperatures above T = t/128.
We also plot the e = 0 spectral weight along the I'X
direction in Fig. 3(b). Both plots clearly demonstrate
that a quasiparticle interpretation of the renormalized
band structure is meaningful only for T ( t/128. For-
mation of the coherent state is controlled by competition
between the spectral width of the f electrons and the
bandwidth of the f-derived quasiparticle bands, both of
which decrease with decreasing temperature. Although
for U = 2t the "coherence temperature" and Kondo tem-
perature are roughly comparable, we do not see how to
relate the physics of the Kondo eKect to the competition
between the two temperature-dependent energy scales in
our calculation.

The momentum dependence of the self-energy, shown
in Fig. 4, is weak at high temperatures, as expected for in-
dependent local moments, and becomes significant as co-
herence is established. The particle-hole bubble IIrr (q, 0)
at = 0 has a similar T dependence to the full suscepti-
bility, while the bubble at the X point follows III'(0, 0)
closely down to T = t/128, but continues to increase at

~ ~

lower temperatures, perhaps indicating an j.ncipsent an-
tiferromagnetic transition.

The quasiparticle renormalization factor decreases
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electrons near the gap edges. The most prominent fea-
ture is a sharp peak near s = 0 in the f-electron density
of states, which develops as the temperature is reduced
from T = t/4, for which the f density of states is also
shown. From Fig. 2(a) we see that for U = 4t the DOS at
s = 0 grows down to T = t/256, but for U = 2t it reaches
a maximum at T = t/128 and then decreases [13). The
temperature dependence of the f-electron contribution
to the magnetic susceptibility is qualitatively similar.

The turnover with decreasing T of the z = 0 DOS for
U = 2t signals a crossover from incoherent local moments
to a coherent quasiparticle band. Figure 2(b) shows
the bare band structure and the renormalized "band
structure" obtained from the zeros of the real part of
the denominator of the Green's function at T = t/32
with U = 2t As expect. ed, these renormalized "bands"
are significantly Battened near the Fermi energy. On
the scale of Fig. 2(b) the bands at lower temperatures
would be essentially indistinguishable from those shown
for T = t/32, but the Fermi velocities decrease with de-
creasing temperature over the full range of temperatures
studied. At T = t/256 the ratio of the Fermi velocities
of the noninteracting and interacting (U = 2t) systems
is 4.7 along I'X and 7.9 along I'M.

If we examine the single-particle spectral functions,
however, we conclude that these curves cannot be inter-
preted as coherent quasiparticle bands, except for U = 2t
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FIG. 4. The temperature dependence of (a) Re Z& (k, 0)
and (b) Im Z~ (k, 0) for k along I X and for temperatures as
listed in Fig. 3(b).

with temperature down to T = t/512 on the Fermi sur-
face along both I'X and I'M. The temperature depen-
dence of Irn E&+(k~, e = 0) is significantly stronger than
the T2 lnT expected for a 2D Fermi liquid at all temper-
atures that we studied, and the frequency dependence
is not of the form s ln [e[, but more nearly resembles
the anomalous frequency dependence of Im Z (k~, s) ob-
served in FEA calculations for 2D Hubbard models very
near half-filling or with van Hove singularities close to the
Fermi surface [14]. While we do not observe 2D Fermi
liquid behavior, we cannot rule out the possibility that a
Fermi liquid will form at lower temperatures.

In summary, using the fluctuation exchange approxi-
mation, we have observed a crossover between a lattice
of incoherent local moments and a band of renormalized
itinerant quasiparticles in a 2D Anderson lattice model
with U = 2t. The magnetic susceptibility bubble has
its maximum at the X point, which raises the possibility
of an incipient antiferromagnetic transition. We are ex-
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ploring this question using conserving calculations of the
response to a staggered field.
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