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One-Dimensional "Spirals": Novel Asynchronous Chemical Wave Sources
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We report the experimental observation of an endogeneous antisymmetric wave source in a quasi-
one-dimensional chemical system. Substantiated by numerical simulations, a theoretical interpretation
relying on the interaction between Turing and Hopf modes is proposed.
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The stationary periodic patterns proposed by Turing, in
1952 [1], as a basis for morphogenesis, have only recently
been observed [2] in the monophasic isothermal chlorite-
iodide-malonic acid (CIMA) reaction [3,4]. The forma-
tion of a reversible complex of reduced mobility between
activator iodine species and the starch used as a color in-
dicator, creates the diA'erence between the eA'ective dif-
fusivities of the activator and the other unbound species,
i.e., chlorite, on which the Turing structures rely for their
existence [5]. Indeed, when complexation is progressively
relaxed, the experiments show [6,7] that a transition from
standing periodic structures to time dependent phenome-
na in the form of traveling waves may occur. In the tran-
sition region, among a wealth of other spatiotemporal be-
haviors, we report the observation of endogeneous 1D
sources emitting waves asynchronously to the left and to
the right. We bring proof that these peculiar sources cor-
respond to a localized stationary Turing state embedded
in an oscillating background. They are thus of a nature
different from that of various sources that have recently
been observed in hydrodynamical problems [8,9].

The observation of Turing structures in a nonbiological
relatively simple redox reaction was made possible by the
use of new continuously fed spatial gel reactors [10] that
are a prerequisite for reaching the asymptotic states and
for testing their stability at a controlled distance from
thermodynamic equilibrium. The original work has
sparked oA' subsequent experimental [6,7, 11—13] and
theoretical [14,15] studies devoted to the determination
of the role played by the gel matrix and the starch, the
uncovering of the different possible pattern modes, and
the understanding of the role of the feeding concentration
ramps.

Our reactor (Fig. I) consists of a rectangular thin strip
of agarose gel, loaded with starch, and fed along two op-
posite sides from well stirred tanks containing nonreact-
ing subsets of the reagents of the CIMA reaction.
Malonic acid is introduced only in tank 2 and chlorite
only in tank B. Reagents diffuse into the gel where reac-
tion processes take place. If no spatial symmetry break-
ing instability occurs, concentration profiles establish nat-
urally into isoconcentration planes parallel to the feed
surfaces. High iodide concentrations are typically found

along tank 2 and a dark blue band due to the formation
of a starch-iodine-iodide complex is formed. On the op-
posite side, iodide and iodine are rapidly oxidized to
iodate and the gel remains clear. Beyond critical condi-
tions, Turing structures appear that break this symmetry
due to the feeding.

As predicted by the invoked complexation and immo-
bilization mechanism [5], a transition between stationary
periodic (Turing modes) and propagating wavelike (Hopf
modes) patterns is experimentally observed by decreasing
the starch concentration [6]. At very low concentration,
only waves could be observed. The starch content is,
however, not an easily tunable parameter since its
modification requires the manufacturing of a different
strip. Nevertheless, a similar transition occurs for a given
low enough starch concentration, by increasing the con-
centration of malonic acid. The possibility of indepen-
dently tuning two bifurcations by varying two indepen-
dent parameters is suggestive of the neighborhood of a
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FIG. 1. In the reactor the gel strip is 10 mm long (XA" direc-
tion), 3 mm wide (YV direction), and 0.14 mm thick. It is
prepared by rapidly cooling a hot solution containing 0.9 g of
Thiodene (a soluble starch from Prolabo) and 1 g of Agarose
(Fluka 05070) in 50 ml of deionized water. It is then
compressed between a white bottom plate and a transparent
glass cover. Two opposite sides are in contact with the feeding
tanks and the others with impermeable boundaries. T = (2
+ 0.5) 'C. The feed concentrations are (i) tank 2 [KI]=2.5
x10 M, [CH3CO2H] =2.3M, [CH2(CO2H)2] is the tunable
parameter; (ii) tank 8 [KI] =2.5 x 10 'M, [NaC102] =2.4
x10 2M, [NaOH] =2.0x10 2M.
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FIG. 2. (a) String of stationary Turing spots: Line of stand-
ing clear spots of oxidized state embedded in a band of the re-
duced darker state organized parallel to the feed boundaries
(see Fig. 1); ICH2(CO2H)2] =0.5x l0 M. (b) Antisymmetric
pacemaker in a wave train state: Waves travel parallel to the
feed boundaries with arrowhead shape. The clear edge of oxi-
dation propagates into the darker recovery region with a rate of
about 3 mm/min. The clear isolated Turing-like spot, near the
middle of the figure, acts as an antisynchronous wave source.
ICH2(CO2H)2] =1.0X l0 M. (c) State averaged pattern ob-
tained by averaging the dynamics of the wave train pattern (b)
over several periods.

codimension 2 point.
Thus for a range of feed concentrations low in malonic

acid, a Turing structure restricted to a narrow region can
be obtained [Fig. 2(a)]: It forms a single line of clear
spots, parallel to the feed boundaries, with a wavelength
k =0.17~0.01 mm. On comparing k with the thickness
of the gel strip (0.14 mm), one can infer that the pattern
is eAectively one dimensional. If the malonic acid con-
centration is then doubled, the bright spots die out while
oscillatory behavior develops. After some time only wave
trains remain, similar to those observed by Agladze, Du-
los, and DeKepper [6], traveling parallel to the feed
boundaries.

Very often, however, even after several hours, a few

single bright spots (one to three) do not disappear and act
as genuine 1D antisynchronous sources of wave trains
[Fig. 2(b)]. The phenomenon is best represented by a
space-time plot of the dynamics along a line parallel to
the feed direction, passing through the source [Fig. 3(a)].
Clear bands of maximum intensity spread, alternatively
to the right and to the left, with a time delay of 16 s,
from a small region that essentially remains time invari-
ant. The existence of a permanently brighter state at the

wave source is clearly demonstrated in the time average
picture [Fig. 2(c)]. Note that the size and relative inten-
sity of the wave source region is similar to that of the in-
dividual spots making up the Turing pattern [Fig. 2(a)].
The source thus corresponds to a localized elementary
Turing cell. Furthermore, the antiphase property of such
a wave source does not result from a continuous spiraling
wave in any plane since a time invariant region similar to
that of Fig. 3(a) is found in the XX' direction at any vert-
ical position in the YY' direction. The essence of the phe-
nomenon is thus one dimensional [7].

Moreover, on further increasing malonic acid by 30%,
all such sources disappear and waves propagate along the
whole line. However, on resetting the control parameter
to the lo~er value, isolated sources reappear after a few
hours but generally at locations uncorrelated to the previ-
ous ones. They are thus truly endogeneous and not linked
to defects or impurities trapped in the gel.

From the theoretical point of view, the existence in oth-
er fields of localized structures under uniform conditions
has been shown in recent studies [16-19] to rely on two
ingredients: multistability between various global states
and dynamics not deriving from a potential function indi-
cating the inAuence of so-called nonvariational eAects
[20,21]. These two elements are present in the vicinity of
a Turing-Hopf codimension 2 bifurcation point where a
pair of complex conjugate roots and a real root (with a
wave number of the linear dispersion relation lql =q, AO)
simultaneously cross the imaginary axis on varying the
bifurcation parameter.

If C is the vector of concentrations, f represents the re-
action kinetics, and D is the diagonal matrix of positive
diAusion coefficients, then near the Turing-Hopf point,
the dynamics of a one-dimensional reaction-diffusion sys-
tem

ac f(c)+D a'c
at

may be described by the superposition of Turing T(X, r )
and Hopf H(X, r) fields:

C(x, t) Co+eTT(X, r )e' '"+eHH(X, r )e'"'+c.c.

Here, Co is the uniform reference state and eT and eH are
respectively the critical Turing and Hopf eigenvectors of
the linearized evolution operator. 0, is the linear fre-
quency of the Hopf mode, i.e., the imaginary part of the
complex root at the codimension 2 point.

The competition between such modes is then described
by amplitude equations [22,23]. If X and r are the slow
space and time scales then

ar
=c TT g I

Tl'T &IHI'T+D—'—
ax

BH =t H-(P, +tP;)IHI'H-V, +t~;)ITI'H

a H+ (DH+ DH)
BX
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(a) Experimental space-time map [space: horizontal axis; time: vertical axis (running upwards)]. The light intellsity
along a line Parallel to the feed boundaries, passing through the brightest part of the Pacemaker, is plotted as a function of time.
Bright lines correspond to clear wave fronts. The field view corresponds to 1.6 mm. The numerical space-time maps (b)-(d) are pro-
duced by integrating the reaction-diA'usion equations of the 1D Brusselator model with an implicit integration scheme complemented
with a finite diff'erence method (L =250, r =20 adimensional units). No flux boundaries are assumed. The following values of the
parameters are used: A =2.5, D& =4.11, Dr =9.73. Then both global Turing and Hopf modes are separately stable [24]. 8 is used
as bifurcation parameter in this near codimension 2 situation. (b) Pinned front connecting a Turing pattern (right) to a train of
p ane waves (left) for 8 =10.0. (c) Droplet of a Turing structure embedded in a Hopf background emitting plane waves on both
sides (8 =10.0). (d) Endogeneous 1D spiral obtained by increasing in one step 8 to 12.5 starting from the front in (b). The waves
are always emitted in phase opposition to the left and to the right. Multistability between such spirals, fronts, and localized Turing
states is obtained for the same range of parameters. As an example, the localized structures (b) and (c) are still stable at 8 =12.5 if
8 is increased quasistatically in small steps.

where p~ and p~ are the two unfolding parameters. We
assume in the following that D and D„arepositive and
also g, P„sothat both bifurcations are supercritical. The
above equations have in general a nonvariational struc-
ture. This dynamical system possesses three nontrivial
global solutions: (i) a family of Turing structures

'r=[(pz. —D Q')Ig]' 'e'~ H=o;
(ii) a one-parameter family of plane waves

y () H [( DH 2)/P ] i/2 I(QIIT IIX)

with the frequency renormalization: 0„=—P; ~H„!
0 2—D; K, where 0„is the preexponential factor in H; and

(iii) a two-parameter family of mixed modes that we do
not write down explicitly as we concentrate, among the
many possible scenarios, on situations where the mixed
modes are unstable and the system exhibits bistability be-
tween the pure global Turing and Hopf modes.

The ingredients to stabilize localized structures are
therefore present. These may be formed by spatial juxta-
position of the global states as is corroborated by numeri-
cal simulations on the Brusselator [24], in the vicinity of

such a codimension 2 point.
The simplest localized structure consists of a front

[Fig. 3(b)] connecting a Turing pattern domain to a train
of plane waves the wave vector and frequency of which

are selected by the nonlinear dispersion relation. Since
the width of the front is narrow, it may interfere with the
underlying Turing structure leading to its pinning. As a

result a stationary front is obtained for a finite range
(locking band) of the bifurcation parameter values

[25,26]. Beyond, but near the depinning transition, one
observes, on the simulations, the characteristic oscillating
velocity of the front. One wavelength to the Turing
structure is added (subtracted) during every emitted
wave period. The nonadiabatic eA'ects responsible for this

pinning escape standard amplitude equations analysis.
Those fronts may then serve as "building blocks" to

construct droplets of one global state embedded into
another [20,21,27-291. Simulations have indeed pro-
duced such localized one-dimensional objects the core of
which is formed by a Turing structure, truncated to a few

wavelengths, emitting plane waves to both sides [Fig.
3(c)]. The amplitude of the plane waves goes to zero in
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the core where conversely the Turing mode presents a lo-
cal maximum but is absent elsewhere. We claim that the
stability of such symbiotic Hopf hole and Turing pulse
finds its origin in a combination of the pinning and non-
variational efrects.

The number of wavelengths in the core and the phase
relation between the waves emitted to the left and the
right depend strongly on the initial conditions as intricate
hysteresis eftects are present. On varying the bifurcation
parameter in the direction where the global Hopf mode
becomes dominant, antisynchronous wave sources, analo-
gous to the experimental ones, can readily be obtained
[Fig. 3(d)]. They can be thought of as 1D spirals.

Simulations also produce the complementary localized
structures where the Hopf mode is embedded in the Tur-
ing background. Such objects and localized Turing struc-
tures restricted to three wavelengths in the core have
been observed transiently in experiments, suggesting a
narrower range of stability or smaller basin of attraction.

These latter experimental observations, for parameters
in the range for which the wave sources occur, comfort us
in the belief that the competition between the Turing and
Hopf modes is indeed important to explain the origin of
all these localized sources.
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