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Scaling of the Hall Resistivity in High-T, Superconductors
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A scaling behavior of the Hall resistivity in a mixed state of high-T, superconductors is shown to be a
general feature of any vortex state with disorder-dominated dynamics (thermally assisted flux flow, vor-
tex glass, etc.). The universal scaling law p r ee p„ is found. The presented theory agrees with recent
experimental data.
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One of the most striking features of the vortex motion
in the oxide superconductors is the behavior of the Hall
resistivity which has attracted intense recent attention.
The Hall resistivity has been found to undergo a sign
change when cooling the sample down from the normal
state [1-7]. Moreover a second change of sign back from
a negative to a positive resistivity has been discovered in

strongly anisotropic materials [4,8]. Furthermore, a puz-
zling scaling behavior of the Hall versus longitudinal
resistivities has been observed as a function of tempera-
ture [7]: p„Y cc p~„with P = 1.7.

The scaling behavior of the Hall resistivity has been at-
tributed to the flux pining [7], whereas the origin of the
sign change generated a variety of possible explanations
[5,9-11],but which one is the most preferable to accept
is presently unclear.

Very interesting ideas to explain the scaling behavior of
the Hall resistivity have been put forward by Dorsey and
Fisher [12]. In particular, the Hall effect itself was attri-
buted to a "particle-hole" asymmetry. The scaling be-
havior of the Hall against the longitudinal resistivity has
been explained in terms of the more general picture of the
glassy scaling near the vortex-glass transition. They re-
lated the exponent P to the specially introduced particle-
hole asymmetry exponent X„, which has to be chosen
k„=3 in order to produce P = 1.7.

In this paper we calculate the eA'ect of Aux pinning on
the Hall resistivity and show that the pinning straightfor-
wardly gives rise to the scaling p„»

tempt'„,

with P =2.
Such a scaling law arises in a natural way without the
need to invoke the hypothesis of the vortex-glass scaling.
The scaling law is universal, independent of the specific
vortex structure, whether it is a vortex liquid or a vortex
glass. The considerations below suggest that the scaling
behavior in the Hall resistivity resulting from pinning is
of a diff'erent origin than its change of sign. This is well
illustrated by the recent experimental data of Samoilov
[8], who observed the scaling behavior p„y ~p, in the re-
gime of the positive Hall effect. Combination of this
finding with the data of Luo et al. [7], who observed a

scaling behavior in the regime of the negative Hall resis-
tivity, seems to rule out a possible link between scaling
and sign change of the Hall resistivity.

We start with the equation of the momentum balance
for a stationary moving vortex line in the absence of the
quenched disorder [13]:

@0
gvL+ avL x n = jx n.

C

Here, j =en.,v, is the transport current density, vL is the
velocity of the vortex with respect to the crystal lattice, v,
and n, are the superfluid velocity and the density of su-

perconducting electrons, respectively, n is the unit vector
along the vortex line, and @p= @ter/e is the flux quantum.
The friction coefficient g can be estimated by means of
the Bardeen-Stephen formula g=@pH, z/c p„, where p„
is the normal state resistivity. The coefficient a deter-
mines the sign and the magnitude of the Hall angle 60
via the relation taneH =a/ri. The explicit expression for
a has to be found from microscopic considerations; it is
the particular behavior of a that determines, for example,
such an eff'ect as the sign change of the Hall resistivity
[10]. In what follows we explore the phenomenological
level of the problem and the specific form of a is ir-
relevant.

Let us discuss briefly the origin of the diA'erent terms
in Eq. (1). The forces acting on the vortex line arise ei-
ther from the interaction with the underlying crystal lat-
tice (depending, thus, upon vt ) or from the interaction
with the superAuid Aowing by. In the latter case the
force is determined by the relative velocity vL —v, ; the
Lorentz force acting on the individual vortex is, therefore,
(e/c)n, @p(v, —vt. ) xn (when writing down the force bal-
ance the part proportional to vL xn has been extracted
from the Lorentz force and then combined with the drag
force acting on the vortex line).

Note that the force balance equation does not include a
term like g'v„which can be easily perceived from the fol-
lowing Gedanken experiment. Let us consider a vortex
line in a superconducting cylinder (z lln) exposed to a cir-
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cular current flowing in the plane perpendicular to z.
Moving the vortex adiabatically along a closed loop
around the cylinder (i.e., along the Aowing current)
leaves the energy of the system unchanged, hence no
force with the component q'v, is exerted on the vortex
line. An alternative argument is the following. Let us as-
sume the force g'v, to exist and the vortex to be at rest in
the lattice frame of reference (i.e. , to be pinned strongly).
Then the counterforce —ri'v, exerted by the vortex on the
superfluid would decelerate the superflow giving rise to
the dissipation of energy in an obvious conflict with the
original assumption about the fixed at-rest vortex line.
Another point to be made is that although the formal
solution to Eq. (1) can be written in the form

a @o . @o a .1+ gvL = jxn+ —j,c C 'g

the last term in the right-hand side should not be inter-
preted as the force acting on the vortex.

As a next step we consider the system of interacting
vortices in the presence of the quenched disorder and
thermal noise. By adding the terms describing interac-
tions, F;nt, , pinning, F~;„;, and thermal noise, FT; the
force balance equation for a given ith vortex acquires the
form

@o.
gvg + av; x n = j & n+ Fint, i +Fpin, i+ FT

c
(la)

Note that g and a here are the bare quantities introduced
above for the pure system. We show below that pinning
renormalizes the friction g leaving the Hall coefticient a
unchanged.

On averaging Eq. (1) over disorder, thermal Auctua-
tions, and vortex positions one arrives at

&F;.;&
= —y(v)v, (3)

@o .riv+avxn = jxn+(F~;„,;),
c

where v denotes the average velocity of vortices. The
averaged interaction force is zero due to Newtons' third
law. The determination of the average pinning force is a
highly nontrivial issue. This problem has been first inves-

tigated by means of a perturbation theory with respect to
disorder [14,15]. The central point in the discussion of
the resistivity scaling is the question of the direction of
the averaged pinning force. The pinning force is the gra-
dient of the random potential. This random potential is
determined by the relative positions of the vortices with

respect to the pins and is invariant under time reversal.
Hence, the averaged pinning force is invariant under re-
versal of the magnetic field. Then, after averaging the
only vectorial quantity that characterizes the vortex
motion and is independent of the sign of magnetic field is
the vortex velocity v. Therefore, pinning force can be
written in the form

[ri+ y(v)]v+av&&n =fL,
with fL =(&p/c)jxn. We see that as we have mentioned
before pinning renormalizes the friction coefficient y only,
whereas the Hall "conductivity" a remains unchanged.
A solution to Eq. (5) is easily found:

1

y(v)

a fLxn
y(v)

(6)

where y(v) =y(v)+ri. In what follows we will take into
account that the Hall angle and, therefore, the ratio
a/y(v) are very small, and, hence, we will neglect the
term a/y(v) with respect to 1. The electric field induced
by the vortex motion is E=(1/c)Bxv and from Eq. (6)
we obtain straightforwardly E = [8C)p/c y(v) ]j, E~
=[a8@p/c y (v)]j. For resistivity defined as p=E/j
one immediately gets

2
C Q

pxy =pxx (7)8@o

The relation (7) is equivalent to an inversion of the
conductivity tensor: p„~ =o„~/(o„~+cr„„)with o„~ =c
xa/8@p. The main result of our analysis is that Hall
conductivity o„~ does not depend on disorder. This result
is general and applies to the regimes of flux flow,
thermally assisted flux Aow (TAFF), and vortex glass be-
havior (creep) as well. The temperature dependence of
the Hall resistivity p y is determined by that of the longi-
tudina1 component p„and a. In particular the sign of
pxy follows the sign of a. In the flux flow regime the tem-
perature dependence of a in Eq. (6) is of equal impor-
tance as that of px and no simple relation between the
temperature dependences of the resistivity components
can be observed. On lowering the temperature pinning
becomes relevant, and p„displays thermally activated
behavior decreasing exponentially with temperature. In
this regime the temperature dependence of pxy is dom-
inated by that of p „(i.e. , the exponential temperature

where the coefficient y(v) )0 can be in principle calcu-
lated by the summation of the perturbation series. The
above statement can be illustrated by the lowest order
calculation in the perturbation expansion over disorder
potential:

(Pv, ,;)= — g V(r)tuv;„(rr) V)Vp(r —r; vr—)),
(4)

where V(r) is the short range disorder potential, p(r) is
the vortex core form factor, u~;„(r,t) is the disorder-
induced displacement field of the vortex configuration
[16], and the summation is performed over the positions
of the vortex lines r&, . Straightforward calculation shows
that the perpendicular to v terms cancel in Eq. (4). Gen-
erally this cancellation follows from the symmetry con-
siderations presented above. Hence the equation of vor-
tex motion now reads:
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dependence of p dominates the comparatively weak
temperature dependence of a which is uninfluenced by
disorder), and we arrive at the scaling relation

2
pxy =~pxx (8)

The results (7) and (8) should be compared with the
available experiments. The data of Iye, Nakamura, and
Tamegai [3], Chien et al. [6], and Luo et al. [7] con-
sistently show a rapid drop in p ~ as soon as p„„becomes
small due to pinning in the TAFF regime. Introducing
pinning sites artificially by irradiation with heavy ions
shifts the irreversibility line as measured by the onset of
longitudinal resistivity p„„[17].The drop in the Hall
resistivity pzy follows this shift and always occurs near
the crossover from the flux low to the TAFF behavior of
p„„. These data are in agreement with the relation (6),
which shows that the fast decrease of p y should follow
that of p

Regarding the origin of the sign change in the Hall
resistivity, p„~, one can conclude from the data reported
by Artemenko, Gorlova, and Latyshev [2], Hagen et al.
[4], and Luo et al. [7], that the sign change is not related
to the pinning and may even take place above T, provided
the magnetic field is low enough. The data of Hagen et
al. and Samoilov [8] indicate that p„~ is positive both at
high and low temperatures and experiences a local
depression, which can cause an excursion into a negative
value, near T,. Upon entering the TAFF regime where
pinning is relevant when decreasing the temperature, p y
drops very fast below the threshold of sensitivity. There-
fore, the existence of a second sign change depends on
whether the pinning is strong enough as to suppress p y
before the second sign change occurs [2-4,7], or after-
wards [4,8]. This explains in a very natural way the oc-
currence of the double sign change in the strongly layered
Tl and Bi compounds, where pinning is reduced due to
the large anisotropy, whereas the second sign change in
YBCO is suppressed by the stronger pinning.

The strongest experimental support for the above ideas
comes from the recent finding of Samoilov [8]. Samoilov
observed a scaling p„~ =Apg„, with P=2.0~0.1, and a
field independent factor A. The result (6) shows that the
simultaneous measurements of the resistivities p and

p„~ allow for the determination of the bare coefficient a.
Comparing (7) to Samoilov's result we then find a ~ H in
agreement with the Bardeen-Stephen result for the Hall
resistivity, tanett ~ H. Note that in the Bardeen-Stephen
approach the Hall eAect is due to the normal carrier Hall
eAect in the vortex cores, which in turn is proportional to
the magnetic field within the core. Recently Budhani,
Liou, and Zhang [18] studied the mixed-state Hall resis-
tivity in Tl-based films containing columnar defects.
They observed that while the sign anomaly diminishes
with the increasing defect concentration, the power law
with P = 1.85 ~ 0. 1 holds even after irradiation, introduc-
ing columnar defects; i.e., scaling law does not depend on
the type of defects.

In the pinned regime the Hall resistivity behavior p y is
dominated by the temperature dependence of p, . The
latter is determined by the eA'ective pinning-induced
damping y(v) in Eq. (3). As we have mentioned before
the explicit calculation of y(v) is difficult and remains an
unresolved problem for the moment. It is very tempting
to try to infer the functional dependence of y(v) from
the current-voltage characteristics obtained for the
various pinning regimes. In the TAFF regime y(v)
~exp(U~~FF/T). In the vortex glass phase p,„
~exp[ —(jo/j) "], and we find y(v) ~ 1/v [ln(1/v)] 't".
Within first order perturbation theory the above result for
y(v) in the TAFF regime has been found in [16] in the
course of the analysis of the pinning of vortex liquid. The
first order approximation for the vortex solid gives a
divergent algebraic dependence y(v) ec v 't indicating
the vortex glass behavior [16].

A basic assumption made in the derivation of the scal-
ing behavior (6) was the time reversal symmetry of the
pinning potential. This condition holds for conventional
superconductors with nonmagnetic impurities, but can be
violated in the presence of magnetic impurities or in un-
conventional superconductors with broken time reversal
symmetry, e.g. , in anyon superconductors. It would have
been tempting to view the scaling exponent P =1.7 found
by Luo et al. [7] as a manifestation of an exotic type of
superconductivity in YBCO, but more straightforwardly,
though more ordinarily, the deviation of P from the ex-
pected value 2 should be attributed to the temperature
dependence of a coming into play near T, (note that Luo
et al. [7] probed temperatures much closer to T, than
Samoilov [8]).

Finally we would like to point out that the obtained in-
dependence of Hall conductivity ozy upon disorder is a
dual analog to the behavior of dirty semiconductors
where the Hall resistivity p y remains unaA'ected by dis-
order [19-21]. Indeed, in the mixed state of supercon-
ductors dissipation is caused by the motion of vortices,
and, therefore, in this case the roles of conductivity and
resistivity are reversed.

In conclusion, we have presented a simple and straight-
forward explanation of the scaling behavior of the Hall
resistivity in a mixed state of type II superconductors as a
result of flux pinning. We have found the universal scal-
ing law pzy ~pzz The theory developed is in complete
agreement with the recent experimental data on BSCCO
compounds by Samoilov [8] and with data on TBCCO by
Budhani et al.
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