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The purpose of this paper is to point out the steps in conventional many-body perturbation theory
which require separate, additional justification over and above convergence of the perturbation series.
The questionable step is the cancellation of the renormalized energy shift by the chemical potential,
neglecting any possible modification of the wave functions as well as state-dependent energy shifts.

PACS numbers: 71.10.+x

I have explored [1] the reasons for and the conse-
quences of the fact that many-body perturbation theory
as normally used in metals is not correct in a number of
situations (which include at least all 2D Fermi systems).
These papers have not been found, to my knowledge, to
contain any errors. A number of other papers [2-4] have
approached the problem of perturbation theory from a
different point of view, attempting to find a difficulty with
the convergence of the conventional series and have found
no hint of the problems I have demonstrated. Some of
these authors [2,3] and much of the community, feel that
these papers are relevant to my work, although they are
not, since my criticism applies to the method by which
they proceed, not to whether that procedure converges on
its own terms. It seems that it would be useful to return
to the basis of perturbation theory and show which steps
can go wrong.

One of the confusing points in this imbroglio is that
many people are under the misapprehension that the
known exact solution [S] of the one-dimensional system
can be essentially obtained by resumming perturbation
theory. This is not the case; some aspects are roughly
correct, others—such as the sharp Mott-Hubbard gap at
general n, the selection rules coupling charge and spin ex-
citations, and certain coupling constant identities [6]
—are not. Thus the implication that difficulties neces-
sarily show up as a failure of convergence is questionable.

For definiteness we study the Hubbard model
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but any model with short-range interactions is subject to
similar problems. It is important to retain the finite sys-
tem and go to the infinite /V limit only at the end.
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is diagonalized with boundary conditions by a set of
Bloch waves k, and u is adjusted so that the interaction
does not change the density.
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Hypothetically, the space of occupied states, determined
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by the set of k’s, does not change as a result of interac-
tions. Now one expands in a diagram series in U with
perturbation denominators involving the €.

It is already here that the crucial step takes place. The
simplest diagrams are those of Hartree type which repre-
sent pure, elastic forward scattering of two particles ko
and k'c’ (there are no Fock diagrams for the model [1]).
All ground state diagrams can be thought of as renormal-
izations of this basic diagram and as leading to a renor-
malized ground state energy o {nys){ng's?.

But for reasons we will shortly explore, the Hartree
terms are hard to deal with so the following trick is usual-
ly employed. The subset of self-energy diagrams is taken
which are irreducible with respect to on-shell, forward
scattering (i.e., ko,k'c'— ko,k'c’). We call their sum
6u. This shift in the mean energy is to be compensated
by a shift in chemical potential, which “of course” must
be the same for all k’s at the Fermi surface.

Then we use as our new perturbing potential
U X nitni) — 84 2k ke and this perturbing potential ap-
parently leads to no Hartree-type diagrams. The self-
energy as a function of k,w is calculated with this poten-
tial, and vanishes at the Fermi surface. u is later re-
trieved by a coupling constant integration trick, so that it
never, apparently, has to be calculated directly. All dia-
grams now involve only interactions with finite momen-
tum and energy transfer.

Another way to express this process is that it is the way
of solving the renormalized Hartree-Fock wave equations
for the wave functions of the quasiparticles. The reason
it is expected to be possible to do it this way is transla-
tional symmetry: The wave functions must be Bloch
waves, and they must, apparently, be the same Bloch
waves as the unperturbed ones obtained in Eq. (2). But,
in fact, this is true only in the limit N — oo and we must
check that the 1/N corrections are not finite.

When put this way it seems manifestly obvious that the
procedure needs justification. In particular, if one adds a
spin-up particle in state k1, this has no effect on other
spin-up particles, but gives a mean potential shift for k'|.
Thus “6u” becomes spin dependent, and cannot be identi-
cal for all states at the Fermi surface. The wave equation
for spin-down particles differs from that for spin-up ones.
That this kind of effect of change in the wave equation
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occurs in finite systems is obvious, and it is essential to
make sure that it does not persist as V— oo, It is clearly
essential not to finesse the solution of this Hartree-Fock
problem by artificially replacing the effects of on-shell
scattering by a chemical potential shift.

One problem with the on-shell scattering problem is
that when the phase shift is finite the effective potential is
ambiguous, as pointed out many years ago by Fukuda
and Newton [7], and the boundary conditions must be
taken into account in order to determine the correct wave
functions and energy shift. This is the problem which my
papers have dealt with.

I will not reiterate the calculations here but quote re-
sults and principles. As pointed out above, the bare ver-
tex U leads to disaster, since the s-wave phase shift is
finite and an 1 spin electron is equivalent to an ordinary
scattering potential for all down-spin electrons, which in
turn leads to the well-known “infrared catastrophe,” and
Z — 0 for the added electron [8] by an argument given in
my previous Letter [9].

In doing this calculation one realizes that the boundary
conditions play a role. The scatterer is somewhere interi-
or to the system, so that in most of space, and in particu-
lar in the asymptotic region near the boundaries, there is
no scattering potential. The scatterer causes a local per-
turbation which provides a new boundary condition on
the wave equation at the origin in relative coordinates.
This boundary condition shifts the actual k' values of the
| spin particles so that the two spaces of momentum
values are not quite the same (if the boundary conditions
are real; if outgoing, particles move in and out through
the boundaries; the effect is the same) [10]. These shifts
in k' also lead to energy shifts (the phase shift, as ob-
served in Ref. [7]1) which contribute to the self-energy of
particle k1 and which are not contained in perturbation
theory, since they are primarily kinetic energy terms, and
depend on boundary conditions which are absent from
perturbation theory. These terms come from the self-
consistent determination of the wave functions, which had
been bypassed in the conventional methodology as ex-
plained above.

In many cases the situation is saved by allowing the
scattering electron to respond dynamically, i.e., to recoil.
If this recoil leads to “effective range theory” with a finite
scattering length a, none of the wave functions need un-
dergo a finite momentum shift relative to the granularity
1/L in momentum space. This is the case assumed
without proof by Abrikosov, Gorkov, and Dzialoshinkii
[11] and it is proved in the limit V/V— 0 by Yang and
co-workers and by Galitskii [12]. (Later, Bloom [13]
proved an equivalent result for the N/V — 0 limit in 2D.)
It turns out that at least one criterion of validity is that
the phase shift & vanish as the relative momentum Q
=k—k'— 0.

My proof for 2D shows that the N/V— 0 limit is
unique and that in general, in 2D, there is a finite shift in

the wave vectors of all electrons relative to their spacing
when one electron is added. The origin of this result lies
in the demonstration of a finite on-shell 7 matrix, which
has been confirmed in fact in Ref. [3]. This reference
differs from my result only in the physical discussion of
this Letter; there is no controversy about the finite phase
shift. I have shown how this involves a radical modifi-
cation of the elementary excitation spectrum; the solution
of the difficulty involves new physics which has been dis-
cussed elsewhere.

The question of 3D is still open. In one article I have
given a general argument that the strong coupling Hub-
bard model is not a Fermi liquid, from a somewhat intui-
tive guess that a projective transformation of the Hilbert
space cannot be carried out perturbatively in U. This
conjecture finds some support in the physical properties of
a number of substances, which are suggestively bizarre or
mysterious. The evidence that moderate interactions or
free particle bands lead, in 3D, to convergent perturba-
tion theory and Fermi liquid behavior is strong but can-
not be conclusive; the question must be investigated in de-
tail.

I am indebted for discussions with H. Fukuyama, E.
Trubowicz, E. Lieb, and E. Abrahams and for discussions
and help in preparing this Letter to Martha Redi.
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