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Prediction of the Phase Diagram of Rigid C60 Molecules
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An integral-equation approach combined with molecular dynamics simulations based on the Girifalco
spherical intermolecular potential has been used to predict the phase diagram for rigid C60 molecules.
The boundary of the liquid-vapor coexistence region and the location of freezing and melting lines have
been sketched out. The liquid phase is only observed in a very narrow temperature range compared with
atomic systems (e.g. , the rare gases). Unfortunately, the dense fluid is predicted to exist above —1800
K, which is su%ciently high that the C60 molecule may be unstable.

PACS numbers: 64.70.Dv, 61.46.+w, 64.70.Fx

The discovery of an eScient synthesis of fulierenes has
stimulated tremendous interest in this material [1]. To
date, most studies have focused on the properties of the
solid phases. The low-temperature structure is identified
to be cubic Pa3 with orientationally ordered molecules
[2,3]. At room temperatures, C6o molecules are known to
undergo hindered rotation [2,4,5]. Higher-temperature
data are sparse. Knowledge of the phase diagram of C6o
is not only of intrinsic theoretical interest, but also rel-
evant to the optimization of the purification procedures
[1]. The structure of the liquid is of considerable interest
[6].

We have employed a refined integral-equation theory
[7] and molecular dynamics (MD) simulations in an
eA'ort to predict the high-temperature behavior of C6o.
Specifically, we have carried out a series of constant-
pressure and constant-volume simulations using Giri-
falco's intermolecular potential model [8] for rigid C6p

molecules in order to map out the high-temperature
phase diagram. This study has enabled us to sketch the
melting and freezing lines and the boundary of the
liquid-vapor coexistence region. The integral-equation
calculations and simulation results suggest that the triple
point shou1d occur around T = 1800 K. The main
features of the predicted phase diagram are also com-

pared with those of Lennard-Jones particles [9-11]. The
triple point temperatures turn out to be in fair accord;
however, there seems to be a significant diA'erence in the
liquid-vapor coexisting region, which we attributed to the
much stiA'er repulse wall, and the relatively narrower po-
tential well in the Girifalco potential as compared with
the Lennard- Jones (12-6) potential.

Earlier studies have established that a pair-wise addi-
tive carbon-carbon (C-C) Lennard-Jones potential gives
a good description of the room temperature rotator phase
[12]. Also, the assumption that pairs of carbon atoms on
diA'erent molecules are interacting via Lennard-Jones po-
tentials with parameters ec C=33 K and tre-c=3.469 ~
produces a reasonable fit to the lattice constant and heat

of sublimation [8]. The present study concentrates on a
much higher temperature regime, where one would ex-
pect that molecules rotate even more freely. Therefore, it
is to our advantage to ignore the internal structure of the
C6o molecules; an approximation that saves a tremendous
amount of computer time. Following Girifalco's work [8]
the interaction is distributed uniformly on a sphere of ra-
dius rp=3. 55 A with the same integrated density as in a
60-site model. The interaction between two C6p mole-
cuies can be integrated over the two interacting spheres
to yield an analytic form for the intermolecular potential.
The resulting potential well depth of two interacting C6p
spheres is 3194 K with the energy minimum at 10.06 A.
This sphericalized C6p potential model with only one in-

teraction site allows us to easily carry out MD simula-
tions on large systems. In practice, we have mostly used
864 sphericalized C6p molecules. %e have confirmed by
direct calculation that the center-of-mass pair distribu-
tion function g(r) for the full 60-site model [12] is essen-
tially identical with that from the sphericalized Girifalco
potential at the same density and temperature (see Fig.
1). Thus for the remainder of this Letter we will only be
dealing with Girifalco's potential.

The integral equation calculations we employed are
based on the Zerah and Hansen [7] closure of the
Ornstein-Zernike equation, denoted HMSA because it
bridges between the well known hypernetted chain
(NHC) and the soft mean spherical approximation
(SMSA). The theory contains an adjustable parameter
which allows one to impose thermodynamic consistency
between the viria1 and compressibility equation of state.
The HMSA has recently been successfully applied for the
determination of the phase diagram of both the one- and
two-component Lennard-Jones (LJ) fluid [13,14]. In
particular, for the one-component LJ Auid, it has been
shown [141 that both the liquid-vapor and the freezing
line can be determined with quantitative agreement with
the simulation data. The freezing line was determined by
applying a freezing criterion recently proposed by Gia-
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FIG. 1. The center-of-mass pair distribution functions, g(r),
at V=637.7 cm /mol and T 1850 K. The solid line is the MD
result from the Girifalco sphericalized potential [8] and the dot-
ted curve is from the full 60-site pair-~ise additive atom-atom
potential model [12]. The dashed curve is from integral-
equation calculations using Girifalco's potential.

quinta and co-workers [15,16], which rests on the
analysis of the contribution of multiparticle correlations
to the entropy of the fluid. A similar approach to that re-
ported in Ref. [14] has been adopted here for the spheri-
calized Girifalco C60 potential. In practice, the HMSA
needs to be solved along a series of isothermal and iso-
choric paths, starting from the zero-density limit, in order
to be able to estimate the entropy and chemical potential
of the system and hence draw the freezing and the
liquid-vapor coexistence line.

In general, the most interesting questions related to the
phase diagram concern the density of the liquid at melt-
ing, the location of the freezing line, and the boundary of
vapor-liquid coexisting region. These issues were ex-
plored by carrying out constant-volume MD simulations
guided by the prediction of the HMSA calculations. Fig-
ure 1 also compares the g(r) function from an HMSA
calculation (dashed line) at V =637.7 cm /mol and
T =1850 K with the results of constant-volume MD
simulations under the same conditions. In the third
nearest neighbor region (r —18 A), simulation curves
show a hint of a solid or glasslike feature. This is due to
the presence of some solid clusters in the simulation sys-
tem.

Simulations at several densities have been performed
for increasing termerature with fixed number density. At
T= 1500 K for p =1.023, 1.045, 1.067, and 1.095 nm
solid C6o coexists with the liquid phase. The g(r) func-
tions, mean-square displacements, and time-dependent
trajectory plots all confirmed this picture. As the temper-
ature is raised, solid and liquid remain in coexistence.
Gradually, the solid component shrinks and the liquid re-
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FIG. 2. The T-p phase diagram predicted by the MD sirnu-
lation (squares and dotted lines) and HMSA theory (solid cir-
cles). The inset shows the HMSA T-P freezing line (upper)
and the liquid-vapor coexistence line (lower).

gion expands with increasing temperature. Eventually,
the solid features disappear and the fluid and liquid-solid
phase boundary is approached. We have also examined
the change of configurational energy with temperature.
The slope of configurational energy as a function of tem-
perature changes at the phase boundary. The transition
temperatures, at which this slope changes, are estimated
to be T =1920, 2000, 2620, and 3240 K for the densities
quoted above. One can draw a crude freezing line based
on these points (see the dotted line in Fig. 2). The error
bar in temperature is estimated to be about + 100 K.
The comparison with the HMSA freezing line, also re-
ported in Fig. 2, shows only semiquantitative agreement
between theory and simulation since, at fixed tempera-
ture, the two lines appear shifted from each other by
about 10% ln density. The discrepancy is puzzling but
might be due to the diff'erent criteria for locating the
transition temperature used in these two methods.

In the low density region, liquid C60 coexists with va-

por. Pair distribution functions and mean-square dis-
placements are not a sensitive way to distinguish the
liquid from the gas. Again, the time-dependent trajecto-
ry plots and change of configurational energy have been
used to locate the vapor-liquid coexisting region since the
single fluid phase and vapor-liquid coexistence region
behave differently. The transition temperatures estimat-
ed for the heating runs at p=0.224„0.391, 0.559, 0.754,
0.944, and 0.964 nm are also shown in Fig. 2 by the
squares with vertical error bars. They likely provide

upper limits to the coexistence region. The HMSA
liquid-vapor coexistence line, obtained through the pro-
cedure outline in Ref. [14] is also reported in Fig. 2. The
inset reports the HMSA T-P freezing line, and liquid-
vapor coexistence line, respectively. Again, theory and
simulation are in semiquantitative agreement with each
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other. The HMSA critical point estimated by interpolat-
ing the gas and liquid branch is T = 2050 K and

p, =0.56 nm . The MD data suggest a value close to
1900 K.

We have also employed a block density distribution
technique [17,18] in order to estimate the densities of va-

por and liquid in their phase coexistence region in an
eff'ect to confirm the above results. To analyze the
constant-volume simulation data the simulation box was,
therefore, divided into smaller blocks. The density in

each block is estimated and the ensemble average of the
probability distribution of the block density is then evalu-
ated. The probability distribution at the average density
p=0.559 nm has been examined for several tempera-
tures ranging from 1700 to 2500 K. At the lowest tem-
perature the block density distribution is broad and has
two prominent peaks, which correspond to the liquid and

vapor, respectively. With increasing temperature the two
peaks approach each other and eventually merge into one,
which suggests that the system has reached a one-phase
region. The peak becomes sharper with increasing tern-
perature. From this analysis we estimated the density of
gas and liquid at several temperatures and mapped out
roughly the boundary of vapor-liquid coexistence region
shown in Fig. 2 (squares with crosses representing the er-
ror bars). The phase boundary obtained in this fashion is

shifted to lower temperature for a given density compared
to the previous estimates. This might be due to the rela-
tively small size of the simulation box.

We have carried out constant-pressure MD simulations
at pressures P=0.022 and 0.5 kbar. The simulations
were started from a fcc solid phase at T=1500 K. The
systems were then heated up gradually. The peak posi-
tion in g(r) plots clearly reveal the isobaric thermal ex-
pansion of the lattice. Eventually, we observe a strong
expansion and large Auctuations of the simulation box;
behavior which signals that the system is in the liquidlike
region. The simulation code we employed prevented us
from carrying out a detailed study of the melting region
[19]. The solid phase is stable up to 2320 K for P
=0.022 kbar, and 2570 K at P=0.5 kbar. The corre-
sponding fcc lattice constants are 15.00 and 14.99 A, re-
spectively. These two constant-pressure simulations give
us a crude estimate of the melting transition (mechanical
instability [19]),and are shown in Fig. 2 as crosses. Ac-
cording to the HMSA calculation, the triple point pres-
sure is P =14 bars. Unfortunately, it is not possible for
us to distinguish zero pressure from the triple point value
within the resolution of the MD simulations.

In many ways one might expect high temperature C60
to be similar to a Lennard-Jones system. A comparison
of Girifalco's C6u potential with the Lennard-Jones (12-
6) potential is, therefore, of interest. For the Lennard-
Jones (12-6) system it is widely agreed that T„;&i,/e
=0.66 with p&, ,„l,o =0.86, and T,/e = 1.3 with p, o
=0.304 [9-11]. One can fit the observed cohesive ener-
gy, AH=167. 8 kJ/mol [20], and nearest neighbor dis-
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tance RNN =10.05 A [81 of fcc Csu to a Lennard-Jones
potential acting between the center of mass of the mole-
cules and obtain a well depth, eLq=2330 K and aLq
=9.22 A. From these parameters, the scaling of
Lennard- Jones values gives Ttripie = 1540 K, ptri pie

=0.86/aLj =1.097 nm and similarly, T, =3030 K and

p, =0.304/ oLJ=0.388 nm . The integral-equation re-
sults Ttl'&p]e 1 774 K and ptp&pf 0.944 nm, are not
very diAerent from the above estimates. However, the
critical parameters estimated from the MD simulations,
T, = 1900~ 100 K and p, =0 56+ 0 06 nm and
HMSA, T, = 2050 K and p, =0.56 nm difrer dramati-
cally from the prediction based on scaling the Lennard-
Jones values. The character of the C60 intermolecular in-

teraction may be responsible for the seemingly diAerent
behavior. In particular, the repulsive wall of the C60 po-
tential is much stiA'er than that of a Lennard-Jones po-
tential and the attractive region of the C60 interaction
damps off rather faster.

To summarize, we report a preliminary investigation of
the phase diagram of high temperature C60 using both
integral-equation and molecular dynamics simulations
methods based on rigid molecules interacting via the Giri-
falco sphericalized pontential. The results obtained from
these two approaches are reasonably consistent. This
work suggests that for rigid C60 molecules the liquid
would only be observed in a narrow temperature range
compared with a Lennard-Jones system. The nature of
the critical point is still somewhat uncertain. It would be
of great interest to apply the Gibbs ensemble method to
this model system [11] to check whether or not our rough
predictions concerning the critical point for the model are
confirmed. Unfortunately, the predicted temperature
range for both liquid and dense fluid (T) 1800 K) is
disappointingly high. In fact, it is above the temperature
at which C6n has been reported to polymerize [21].

Both A.C. and M.L.K. thank the NSF for support and
Rick Smalley for his interests in this calculation. C.C.
acknowledges the support of MURST through Consorzio
Interuniversitario Fisica della Materia. This project be-
gan when C.C. was a NATO Fellow at University of
Pennsylvania. We thank Daan Frenkel for helpful dis-
cussions.

Note added. —After submitting this manuscript we,be-
came aware of a related investigation dealing with the
possible existence of liquid Csu [22]. The simulation re-
sults are in broad agreement with the present investiga-
tion. However, they conclude on the basis of free energy
calculations that the sublimation line passes close to but
above the metastable critical point and that the liquid
does not exist.
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