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It is suggested that solitary wave solutions exist in the gap region of photonic band gap materials with
a Kerr nonlinearity. Using a variational trial function we estimate the amplitude, size scale, and the na-
ture of phase modulation of these nonlinear waves. In two dimensions, we predict the occurrence of a
variety of finite energy solitary waves associated with the diA'erent symmetry points of the crystalline
Brillouin zone. Solutions which preserve the symmetry of the crystal exist for both positive and negative
Kerr coefficient whereas solutions which break the symmetry occur only for positive nonlinearity. These
states are relevant to the bistable switching properties of photonic band gap materials.

PACS numbers: 42.50.Rh, 42.65.—k, 71.50.+t

Photonic band gap materials represent a new class of
dielectrics in which there is a complete gap to elec-
tromagnetic wave propagation in three dimensions, in

analogy to the electronic band gap of a semiconductor
[1-9]. It has been shown [3-5] that such structures exist
with gaps as large as 20% of the gap center frequency.
Materials of this nature have recently been fabricated [5]
for applications in the microwave and optical frequency
regimes. A number of new physical phenomena have
been predicted to occur in these materials including
strong localization of light [2], inhibited spontaneous
emission from atoms [1,7], and photon-atom bound states
[8]. In this paper, we suggest that, in the presence of a
Kerr nonlinearity, wave propagation can occur in these
dielectrics for frequencies within the forbidden gap. In
the low intensity linear regime, illumination of the
periodic dielectric at a band gap frequency leads to ex-
ponential decay of the electric field amplitude from the
surface and strong reAection of all incident light. Winful,
Marburger, and Garmire showed that optical bistability
can occur in nonlinear distributed feedback structures
[10]. Chen and Mills carried out a numerical study of a
finite nonlinear one-dimensional periodic dielectric and
showed that for frequencies within the forbidden gap soli-
tary waves exist allowing the system to switch from low
to high transmissivity [11]. An analytical description of
the nonlinear wave equation was subsequently obtained
by Mills and Trullinger [12]. Specific calculations for
near band-edge solitons in finite 1D superlattices have
been performed by de Sterke and Sipe [13]. Dynamical
studies of these solitons show that they exhibit relativistic
behavior with velocities between zero and the average
speed of light in the medium [14-16].

In higher-dimensional photonic band gap materials, the
underlying nonlinear wave equation has not been solved
exactly. We present in this paper an approximate solu-
tion to the nonlinear equation using a new variational
method. Our variational method reproduces to a high de-
gree of accuracy the exact soliton solutions in one dimen-
sion. It furthermore makes a number of new predictions
concerning the existence and properties of solitary waves
in higher dimensions. This includes the occurrence of a
variety of finite energy solitary waves associated with

diff'erent symmetry points of the crystalline Brillouin
zone. The one-dimensional gap soliton solution with
phase and amplitude modulation in the direction of a sin-
gle reciprocal lattice vector of the crystal is extended in

the transverse directions and has an infinite energy in a
higher-dimensional system. However, if the Kerr coef-
ficient is positive, we show that localized finite energy sol-
itary waves are in fact possible with phase modulation in

the direction of a single Bragg scattering vector. Unlike
the one-dimensional case, finite energy solutions, which
pick out a specific reciprocal lattice vector and thus break
the symmetry of the crystal, do not occur for negative
Kerr coefficient. On the other hand, we find a new class
of solitary waves of higher symmetry which occur for
both positive and negative Kerr coefficients. These new
self-localized states involve Bragg scattering by a com-
plete basis set of reciprocal lattice vectors and exhibit
phase modulation in each of these directions.

Another distinguishing property of solitary waves in a
photonic band gap is the scaling of the total electromag-
netic energy contained in the state with the frequency of
the underlying radiation. For one-dimensional solitons
the total energy vanishes as the frequency approaches a
band edge where the effective mass approximation is val-
id. For a three-dimensional solitary wave, a simple scal-
ing argument suggests that the total energy is minimum
near the center of the photonic band gap but in fact
diverges as the frequency approaches this band edge.
These threshold, gap center, solitary waves may prove
valuable for coupling energy from external sources into
an otherwise inpenetrable photonic band gap material on
scales much longer than the tunneling length.

For the purpose of illustration, we describe in detail
solitary wave solutions in a two-dimensional periodic non-
linear dielectric with the point group symmetry of a
square lattice. The essential new physics that distin-
guishes the square lattice from 1D periodic structures is
the existence of multiple symmetry points in the crystal-
line Brillouin zone which determine the photonic band
edges [17-21]. Each of these symmetry points plays an
important role in determining the nature of nonlinear
waves within the gap and accordingly a slowly varying
envelope function expansion of the true electric field am-
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plitude must be performed about each point. The linear
part of the dielectric constant is taken to have the form
e(x,y) =eo+Ae(cosGx+ cosGy ) where the reciprocal
lattice vector has a magnitude G =2m/a. It is assumed
that the electric field E and polarization P are perpendic-
ular to the direction in which they vary. Denoting the z
component of the complex electric field amplitude of fre-
quency m by E, the nonlinear wave equation is

[& +k e(x,y)+12ng k iEi ]E=0
where k =ro/c, co is the optical frequency, c is vacuum
speed of light, and g is the nonlinear susceptibility.

The slowly varying envelope approximation to this
equation consists of retaining only those Fourier com-
ponents of E(x,y) which lie near the crystalline band
edges. These occur at the symmetry points X and M of
the square lattice Brillouin zone (see Fig. 1, inset). We
consider first the X symmetry point at ko=(z/a)x and
expand E(x,y) =Ei(x,y)e +E2(x,y)e, where
Ei and E2 are slowly varying envelope functions of spec-
tral width hk((ko. Substituting this expansion into (1),

$k OXcollecting terms of order e and e, respectively,
and keeping only leading terms in the derivative expan-
sion, we obtain a coupled set of nonlinear diff'erential
equations for E& and E2. It is straightforward to show
[12] that static solutions in which there is no net trans-
port of electromagnetic energy satisfy the condition
iEii =iE2i in which case the coupled equations can be
conveniently expressed in terms of a two component spi-
nor field:

[io, tl„+|iy'+(co' —1)/4+co'Pcr„+co'A(ate)]e =0, (2)
where + =(Ei*,E2 ), x and y are dimensionless coordi-
nate variables measured in units of G ', tji„=|I/t)x,
el~ =tl/tiy, ro is a dimensionless frequency measured in

units of the characteristic frequency roe =ca/a Jap, p
=he/Seo, and X=9rrg /2eo. cr„and o, are the 2x2
Pauli spin matrices which satisfy an anticommuting alge-
bra. In the absence of the term 8~+, this is precisely the
1D soliton equation [12]. The second derivative term
here is essential, however, to render the solitary wave
solution finite in the y direction.

The underlying band structure in the envelope approxi-
mation (2) is obtained by setting A. =0 and considering
solutions of the form %"=We' ' where q and r are 2D
vectors in the x-y plane and @ is independent of r. At
k=z/a (q =0) there is a frequency gap bounded by the
band edge frequencies roP=(1+ Ae/2eo) 'i. In the
overall band structure of the crystal the frequency
ro+ =roP plays the role of the upper band edge of the
photonic band gap. As a consequence of the anisotropic
dispersion, this model has an indirect gap with the lower
band edge ro- occurring at the corner of the Brillouin
zone (M point).

Before discussing the precise nature of solitary wave
solutions of (2) we describe the possibility of qualitatively
diff'erent solitary wave states associated with the other
symmetry points in the Brillouin zone. Equation (2)
clearly breaks the symmetry of the square lattice. By in-

terchanging x and y in Eq. (2) we may obtain solitary
waves that are rotated by 90 ~ To find nonlinear solu-
tions that preserve the symmetry of the crystal it is neces-
sary to perform an envelope expansion about each of the
four equivalent X points, E (x,y ) =E ie +E2e
+E3e' +E4e '

. Again assuming a static self-
localized state with the magnitude of the slowly varying
envelope to be the same, the eA'ective equation for the
four component spinor field %'t=(Ei, Ez,E3,E4 ) is

[i(yi 1)„+y2tly)+(r0' —I)/4+ro'Py3+ro')j. '(e te)]e
=0, (3)

where lj, '=(3/2)X, and yi, y2, and y3 are 4x4 matrices
defined as
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FIG. 1. The size parameters a ' (solid line), b ' (dotted
line), phase parameter d (dot-dashed line) (left scale), and am-
plitude (A A, ) (dashed line) (right scale) of the broken symme-
try E-solitary wave are shown as a function of the band gap fre-
quency b =co) —ro . The absolute band gap is marked on the
graph as co+ and co —. These calculations are done for
heo/f0=0. 7 and X, )0.

Unlike Eq. (2), which requires a second derivative to
yield a localized solution, we will show that symmetric lo-

calized solutions of Eq. (3) are possible even though we

have retained only first order derivatives in both the x
and y directions.

A distinct class of solitary wave solutions is associated
with the fourfold degenerate M point. Since there are
two reciprocal lattice vectors which connect a given M
point to symmetry related partners, it is necessary to in-

clude all four of the corresponding envelope functions in

any expansion of the electric field amplitude. This yields
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[i(yi B„+y2By)+ (co2 —2)/4+ co py3+ co2X'(et+')]e' =0
(4)

for the four component envelope field +, where the new
4 x 4 matrices y~ and y2 are defined as

o, 0
I

0 ~ s f2
a, 0

I

0 —oZ

o. +I
o+I 0

The underlying photonic band structure near the M
point is determined by setting the nonlinear coefficient
A. '=0. A spectral gap occurs between the two frequencies
co'— =J2(I + Ae/eo)

In order to have a complete photonic band gap, the
gaps at the X and M points should overlap. This leads to
the requirement that he/en~0. 5. In this case, the true
photonic band gap is indirect and is bounded by the lower
band edge co —= co — and the upper band edge m+

~p)
Equations (2), (3), and (4) describe the properties of

three distinct types of elementary solitary waves within
the two-dimensional photonic band gap. Unlike their
counterpart for the one-dimensional stop gap in which a
simple analytic soliton solution exist [12] we seek approx-
imate analytic solutions within the gap. Nevertheless,
certain features of the one-dimensional solution remain
evident in higher dimensions. The first is the exponential
decay of the wave amplitude. Physically we may regard
the high light intensity at the center of the solitary wave
as creating an eAective dielectric defect in the otherwise
periodic structure leading to a localized state in the gap
[22]. Another essential feature of the solitary wave is the
existence of a kink in the phase of electric field near the
center of the solution. Both of these features play a vital
role in the variational trial function we introduce to ap-
proximately solve the nonlinear envelope equations.
Equation (2) may be regarded as a stationary point of the
functional

Fi = d r[)By+( —4't[ia, B„+(co —1)/4+co Po„

+(~'/2)~(~t~)]~] (5)
with respect to arbitrary functions +. The condition
bFi/b+t=0 may be implemented approximately by in-
troducing a trial solution +t(x.y ) =e(r) (e ' ', e' ' )

with e(r ) =2 sech (ax )sech (by ) and @(r) =c +arct an [d
xtanh(ax)] describing a locahzed state with a kink in

the x direction. The functional Fi can be evaluated
analytically and minimized with respect to the variational
parameters A, a, b, c, and d. The results are shown in

Fig. 1 as a function of the dimensionless detuning fre-
quency 6=co+ —co . The phase shift c =(n+ I/2)n. For
this symmetry breaking solitary wave, a nontrivial solu-
tion exists for X & 0. Within the two envelope function
approximation (2) this solution persists for all frequencies
within the X gap: co- & co & coP. However, for fre-
quencies cot-1& co & cot- 1 which lie outside of the true
photonic band gap, the solution is unstable to decay by
interaction with the continuum modes. As shown in Fig.
1, within the photonic band gap region, the length scales
a ', b ' of the solitary wave diverge as 8 ' and the
amplitude 8-6' near the upper band edge. A similar
behavior for a ' and A occurs co — but this is preceded
by the occurrence of the indirect lower band edge
co =m . A more elaborate trial wave function is in
fact needed to exhibit the divergence of the localization
length at the lower direct band edge for X) 0 [12]. We
refer to the above solution as the "4' solitary wave. " The
total energy of the solitary wave is defined as U
=f d r(+t%') for each frequency in the gap. In general,
the total electromagnetic energy of the solitary wave
scales as the square of the amplitude 2 and the volume
a . Near the band edge (small 6) it follows that the
energy obeys the scaling behavior

U- [Xk"8' " ] (6)
d=2 is a marginal dimension in which U is some finite
number throughout the gap. For 1=1, U 0 as the
band edge is approached and there is no threshold for
creating a soliton. In d =3, however, U ~ near a band
edge and in fact the threshold energy for creating a soli-
tary wave is realized near the gap center, as far from the
band edges as possible.

The variational method we have outlined may be used
to obtain an "M solitary wave" as well as a "symmetric X
solitary wave. " From Eq. (4) it is apparent that the M
solitary wave can be regarded as an extremum of the
functional

F2=~ dzret[l(yi B.+y2By)+(m2-2)/4+M2py3+(N2/2)~'(~t~)]~.

A solution can be found for all frequencies in the gap for
both positive and negative A,

'
by inserting the variational

function %'t=e(r)(e ' ', e' ', e ', e' ') where

e(r) =A sech(ax) sech(ay),
@i

=c i + arct an [b tan h (ax ) ]+arctan [b tan h (ay )],
and

@2=c2+arctan[b tanh(ax)] —arctan[btanh(ay)] .
Minimizing F2 with respect to the variational parameters
A a, b, and c yields a finite energy solitary wave. The re-
sults are given in Fig. 2 for A. '&0. Here c~ =2zn and
c2=(2n+1)x. The case for X'&0 is easily found by mir-
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ror reflecting the curves about 6=2.75 in Fig. 2.
We mention finally that a symmetric X solitary wave

solution occurs by following essentially the same pro-
cedure as above by casting Eq. (3) into a variational
form. The trial solution takes a similar form to the sym-
metric M solitary wave. The results are qualitatively
similar to those depicted in Fig. 2 so we do not repeat
them here. It is interesting to note, nevertheless, that un-
like the broken symmetry X solitary wave, a symmetric
solution of finite energy exists for either sign of the non-
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utilized as low threshold microcavity lasers [24].
These studies will further elucidate the novel propaga-

tive eA'ects of photonic band gap materials. Photonic
band gap materials, although "emptier than the vacuum"
to linear electromagnetic effects [1] are quite rich in non-
linear phenomena. Materials which exhibit these non-
linear phenomena at modest field strengths may have im-
portant technological applications.

This work was supported in part by the Ontario Laser
and Lightwave Research Centre and the Natural Sci-
ences and Engineering Research Council of Canada.
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FIG. 2. The size parameter a ' (solid line), phase parame-
ter b (dotted line) (left scale), and amplitude (2 A.') (dashed
line) (right scale) of the M solitary wave are shown as a func-
tion of the band gap frequency b'=rot~i —co2 for A, '&0 and
he/f0=0. 7. The absolute band gap is marked on the graph with
coy and m-.

linear Kerr coe%cient.
In summary, we have derived a generalization of the

one-dimensional optical gap soliton states to higher-
dimensional photonic band gap materials. The variation-
al ansatz reproduces very accurately the exact 1D gap
soliton state for most of the band gap. The only
significant deviations from the exact solution occur near
the lower direct band edge for X & 0 and the upper direct
band edge for )I, (0. In our 2D square lattice model with
an indirect gap these regions are not relevant to the true
photonic band gap. The 1D soliton state exhibits relativ-
istic dynamics when time dependence is included in its
governing equation [15]. This follows directly from the
anticommutation algebra of the Pauli matrices for the 1D
problem. In higher dimensions this relativistic dynamics,
we expect, will be lost, since, unlike a true Dirac equa-
tion, the y matrices appearing in Eqs. (3) and (4) fail to
anticommute.

The experimental realization of these self-localized sol-
itary waves requires lossless materials with large non-
linear Kerr coefticient. Typical nonresonant nonlineari-
ties in semiconductors are g —10 ' -10 ' (cm/V) .
For certain GaAs-AIAs structures it has been shown that
the optical absorption edge falls oA' very sharply below
the electronic band gap whereas the nonlinear constant
remains relatively high. In these systems g —10
(cm/V) [23]. If we assume 6—10 ' the solitary wave
has a peak intensity of the order of 3 kW/cm corre-
sponding to a field strength of 10 —10 V/cm. Another
possible system is a two-dimensional array of InGaAsP
disks. Individual disks of this nature have already been
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