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Casimir Forces between Beads on Strings
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We consider a string with uniform energy density and tension and with a number of pointlike masses
attached at fixed interdistances. We evaluate the eAective interaction forces between these masses in-
duced by the quantum fluctuations of the string. For interdistances large compared to the thickness of
the string and small compared to the total length, these forces are universal and attractive and fall off' for
large distances as 1/r and for small distances as 1/r. The attractive nature of these forces creates an in-
stability under which masses added to the string tend to aggregate.

PACS numbers: 11.17.+y

In most dynamical models of string evolution, it is as-
sumed from the outset that the energy density and ten-
sion are constant along the string. It is within this frame-
work that the Nambu-Goto [1] and Polyakov [2] models
are formulated, which are the basis of the string theory of
elementary particles and their interactions. Also the ex-
tension to include elastic interaction energy that opposes
bending of the string [3] and the models considered in [4]
make this assumption.

There may be applications of string dynamics where
this assumption is too stringent. The energy density and
tension generally vary along strings which have zero
modes attached to them, or strings which are wiggly on
scales much smaller than the scale of interest to the ob-
server. In particular, such may be the case with QCD
strings, cosmic gauge strings, and the vortices that occur
in superconductors and superfluids. Also, in applications
to polymer physics, the mass distribution along a string is

generally uneven. A natural extension of the Nambu-
Goto model was proposed at the classical level in which
new degrees of freedom on the string allow for variable
energy density and string tension [5].

In the present paper, we examine the forces induced by
the transverse quantum mechanical Auctuations of the
string on deviations away from constant energy density.
Inhomogeneities in the energy density of the string alter
the frequency spectrum of the transverse string oscilla-
tions. This results in Casimir type forces between the in-
homogeneities. In this Letter, we evaluate these forces in
the case of pointlike masses attached to a straight string.

Part of our motivation is a possible connection with
gravity. We will find below that when two inertial
masses, say rn] and m2, are attached to the string, quan-
tum Auctuations are responsible for an attractive force
between the masses which is proportional to the product
m]rn2 in the limit of small masses. The force does not
scale like 1/r as in gravity, but it is proportional to the
product of inertial masses, so that an analog of the
equivalence principle holds here, which arises naturally

from quantum mechanical eA'ects.
Our assumptions are as follows. We consider a

straight string of length L and thickness I/A, with con-
stant energy density p and constant tension x.. N masses
m; are attached to the string in various fixed locations
with coordinates x; (i = I, . . . , N ). Distances between
the various masses will always be taken to be much small-
er than the total length L [6], but much larger than the
thickness I/A. In this limit, the Casimir forces will be
found to be independent of both L and A. Only the d —

1

transverse degrees of oscillation of the nonrelativistic
string in d space dimensions are retained. We include a
tension term in the action, but we shall neglect eftects due
to the bending of the string. The dynamics are thus as-
sumed to be governed by

4 p

N

dx —(pj' —tv' ')+ —g m;j '(x;)
2 2 i=l

tcp„"(x)+pea'p„(x) = —ca' g m;p„(x;)b(x —x;) . (2)

where p stands for the d —
1 transverse oscillation degrees

of freedom.
We will encounter some quantities which require regu-

larization. This may be eAected by a cutoA on the wave
vectors of the transverse string oscillations. We may in
some applications think of this cutoA as physical in na-
ture. At momenta beyond the cutoA', one would be prob-
ing the internal structure of the string, which typically in-
volves new physics, not summarized by Eq. (1). Thus the
ultraviolet cutoA should be of the order of the inverse
thickness of the string, and we take its value to be A.

First, we derive a general equation for the frequencies
of the oscillation eigenmodes. Let us label masses m;
such that their locations on the string are ordered: 0

xp + x] + x2 + x3 + ' ' (xQ ( xJtv+] L. The equa-
tion for a mode with frequency co is derived from (1):
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~~+i
To ~++i,

Here we define the transmission matrices:

(4)

21kxjt e1+ tq

—te ' 1
—t

+2ikx
J J

ikL 0
To= 0

—ikLe

with t~ =ikm~/2p Th.e equation for the momenta k is the
condition that the system of Eqs. (4) admit nonzero solu-
tions:

Within each interval between the masses, p is just a sum
of two exponentials:

x, -) ~ x ~ x, , v (x) =A, (k)e'""+B,(k)e '"', (3)

where pc@ = K k . Continuity of p~ and the known
discontinuity of p„' lead to the following transfer equa-
tions (i =1, . . . , N):

0 =2 —2coskL+ k sinkL .
p

(8)

The problem of summing the solutions of this equation
simplifies when the limit L ~ is taken. We define
phase shifts as follows:

k„—L =2zn+ 26„—, n =0, 1,2, . . . , (9)

on the string.
When no masses are present (N =0), the momenta are

given by k„—L ~2zn for n =0, 1,2, . . . . There are two
linearly independent modes with the same frequency for
every positive n. When masses are added to the string,
this degeneracy is lifted as will be described below. The
zero point energy that results from summing the eigenfre-
quencies is proportional to L and amounts to a renormal-
ization of the eAective energy per unit length p:

i 1/2

Sp=+2n. A — A (d —1) . (7)
p,

When a single mass m is present (N= 1), Eq. (6) be-
comes

det(1 —T~T~ )T)-To) =0. (6) and solve Eq. (8) in terms of 8„—as L ~ for fixed k:

We want to solve Eq. (6) and sum the corresponding os-
cillation frequencies. We will encounter infinities (i.e. ,

quantities which are infinite in the limit A ~) but they
can all be absorbed into renormalizations of the parame-
ters that have been introduced so far: energy density p,
tension ~, and the masses rn; of the extra particles on the
string. After these renormalizations have been eAected,
we will evaluate the interaction forces between the masses

6„+ =0,
6„=—arctan [(m/pL )nn] .

(10)

Note that the unshifted momenta k„+ correspond to
modes of oscillation which have a node at the location of
the mass m on the string. The energy shift which results
from adding the mass m is independent of the length L
(for large L), and corresponds to a renormalization of the
efl'ective mass due to string fluctuations:

i/2-
lC6'm =—

2E p

Am
Aarctan

2p
—~ ln~ 1+ ™

m 2p
(d -1) .

When two masses are present (N =2), Eq. (6) becomes

rn]+m2 mirn2
0 =2 —2coskL+ k sinkL —

z
k sinkxsink(L —x), (12)

p p
where x =x2 —x~. We parametrize the solutions again as in Eq. (9). One can show that the phase shifts 6„—are
bounded in magnitude by 3x/2 when m~ and m2 are varied from zero to infinity. Hence, in the limit L ~ with k
fixed, we can neglect S„compared with nn wherever k appears in Eq. (12) other than in the combination sinkL or
coskL. Equation (12) is then quadratic in tan6„. It can be solved explicitly, and we find

nn(m~+mz)pL —
gr n m~m i z4sxnn /Lx

6„++6„=—arctan
p L —rr n m~m2(1 cos47rnx/L)— (13)

From the requirement that 8'„+B„bea continuous function of k], mi, m2, and x it follows that the arctan function
takes values in the interval [—n/2, x/2] when the denominator p L —n n m~m2[I —os(c4xn /Lx)] is positive, and in
the interval [n/2, 3n/2] when that denominator is negative.

Thus, the shift in zero point energy when any two masses are added to the string is given in the L ~ limit by

1/2 2
K k 2k(m~+m2)p —k m~m2sin2kx

8F = —(d —I ) — dk f —arctan
p "o & 4p —k m~mq(1 —cos2kx)

(14)

where f(x) is a smooth function approximating the step function 0(1 —x). In the limit of large k, the arctan function
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in Eq. (14) equals
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3R ml+m2 1—kx (mode) —— p+0
2 k mlm2 k

It is clear from this limiting behavior that 6E depends upon the cutoA A only through x-independent terms. Hence one
of the main results of this paper: The interaction forces are universal, i.e., independent of L and A for large I and A.

On dimensional grounds, we then have

mlm2 m2
6E =($Ep+ V(x), V(x) = F— (is)

px ml

There is a set of interesting limits that can be taken in this expression.
The effect of small masses ml, mz«px is easily evaluated by expanding Eq. (14) in a power series. We find, in this

regime, a universal two-body interaction potential, proportional to the two masses ml and m2 and falling oA as the in-

verse cube of distance:
l/2, -

mlm2
V(x) = —(d —i)

32K' p p x'
3 ml+m2 m+0
4 p x4

The eAect of one small mass m to first order in that mass but all orders in the other mass M is also interesting and given

by the following expression:

l/2

v(x) = 6 K

2E p
(d —1)m &0

kM kM
dk

2 2 2
cos2kx+ sin2kx

4p+k M p
(i7)

In the limit of small M, we recover Eq. (16), and in the limit of infinite M, we obtain

l/2

V(x) = —(d —i) Am K 1

16zp p

In the limit ~here both masses are large, we have

l/2

V(x) = —(d —i)t
K'

p, 24x
p(m 1+my) xplnx+ 0

4zm lm2 m

The I/x leading part of this potential was derived originally in [7], where it was also shown to be universal. Equation
(14) is a systematic expression for corrections to this leading behavior.

The equation for a general number N of additional masses can also be readily derived from Eq. (6), and reads (with
X(') =XJ X('):

k
0 =2 —2coskL —g

p=l P

p p

Q m, , Q sinkx, , „,. sink(L —x...,),
(ai a&) i =1, i =2

(20)

where the (al a~) are all possible ordered (al ( aq ( a~) subsets with p elements of (1,2, . . . , N). This equa-
tion can also be solved in the limit where I ~, and one finds

a„,6'„=6„++6„=arctan
asin

where

(2i)

N

a( )=g
p=l

k

p (. ..)

p

Qm. ,i=l
p cos

U sinkx. . .., . (kx. .. ) (22)

and the energy shift may be written down in analogy with Eq. (14). The three-body forces may be of special interest.
They are given in the limit of small masses by

& l/2
m lm2m3

V(x )2,X|3,X23) =+ (d —1) h, (23)
64m P P xl3
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for three masses with ordering x
~

& x2 & x3. Note that
two-body forces dominate over three-body and higher
forces at large distances. One can also evaluate the
three-body forces in the large mass (i.e. , small distance)
limit. It is found that the two-body forces dominate in

that limit as well.
We conclude with some additional remarks about the

nature of these Casimir type forces. The most interesting
physical implication of our results is perhaps that all
forces being attractive between all beads, an instability
occurs along the lines of the instability present in gravity.
Masses attached to a straight string tend to aggregate.
The forces we have investigated are similar to gravity in

other respects as well. Indeed we found that the force be-
tween two inertial masses m~ and rn2, attached to a
straight string, is proportional to the product m ~m2 in the
limit of small masses. Therefore this force obeys the
equivalence principle in that limit. One may even hope to
explain the phenomenon of gravity by postulating that we
and everything we know of are attached as zero (or near
zero) modes to a 1]at 3+1 dimensional hypersheet embed-
ded in a higher dimensional space. However, we found
that the force between the two pointlike masses on the
string, in the limit of small masses where the "principle of
equivalence" holds, is proportional to —m ~m2/p r,
where r is the distance between the masses. Its naive
generalization to 3+1 dimensions, —m~m2/e r, where e
is the energy per unit volume of the hypersheet, does not
have the desired r dependence. It is tantalizing, however,
that the equivalence of inertial and "gravitational"
masses in the toy model arises naturally from quantum

mechanical eff'ects.
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