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One of the crucial aspects of density perturbations that are produced by the standard inAation
scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian.
The three-point correlation function of the temperature anisotropy of the cosmic microwave background
radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this
function is calculated in the general context of various allowed non-Gaussian models. It is shown that
the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may
be able to provide a crucial test of the Gaussian nature of the perturbations.
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Testing for the Gaussian nature of the primordial Auc-
tuation spectrum is of critical importance to many cosmo-
logical models. In particular, traditional cosmic inAation
[1] specifically predicts a Gaussian density Auctuation
spectrum. The scale invariant quantum fluctuations gen-
erated during the inflationary epoch are expected to serve
as the primordial density perturbations which develop
into the large scale structures we observe today [2].
Competing models for structure formation, including to-
pological defects originating from cosmological phase
transitions [3] and nonstandard inllation models [4], will
also generate a scale invariant (or nearly scale invariant)
power spectrum for density perturbations similar to that
of inflation. However, the statistics of these latter Auc-
tuations are non-Gaussian. Thus, the Gaussian nature of
the fluctuations provides a unique handle in discriminat-

ing diff'erent structure formation scenarios. In this
Letter, we will discuss how to test this aspect of the pri-
mordial density field through the temperature anisotropy
of the cosmic microwave background radiation (CBR).

As we showed [5], in momentum space, the lowest or-
der deviation from Gaussian behavior is described by the
bispectrum of the gravitational potential p, Pt, (k i, kq,
k3) =(Pt„pk,pt„) (kt+k2+k3=0. ) When the perturba-
tion is adiabatic so that the temperature anisotropy is re-
lated to the gravitational potential p at the last scattering
surface through the Sachs-Wolfe [6] formula,
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T 3
'

the three-point temperature correlation function is related
to the bispectrum through

2z ' (2)

where rio =2Ho ' is the distance to the last scattering sur-
face (we set tin=1 thereafter), and m, n, l are the beam
directions. A nonvanishing three-point function clearly
indicates that the bispectrum is not zero. Note that for
Gaussian primordial perturbations, the bispectrum is
strictly zero in all cases. Thus, the three-point tempera-
ture correlation function is a clean test of the Gaussian
character of primordial fluctuations.

In [7], Falk, Rangarajan, and Srednicki found that in
an infiationary model with cubic self-interaction, Pt, (ki,
k2 k3) is given by

Pt, =p(k &k2k3) (k 1 + k2+k3 ),
where p —10 . In this paper, we will show that without
invoking any new assumptions about inAationary models,
the nonlinear gravitational evolution of the initial Gauss-
ian perturbations will give rise to a three-point correlation
function, which has a similar angular dependence to that
which certain non-Gaussian inflationary models predict,

!
but a much larger amplitude than the one considered in

[7]. Then, we extend the analysis in [7] to include more
general cases of inflation, which produce not only the
scale invariant but also the "tilted" perturbation spec-
trum [8]. The extended analysis is helpful in discussing
the eAect of the spectral index on the angular dependence
of the three-point function. To choose diff'erent non-
Gaussian inAationary models through three-point temper-
ature correlation function will be hard because of the
gravitational evolutionary eA'ects. However, the three-
point correlation function produced by a cosmological
phase transition tends to have a distinctive angular
dependence, which should enable one to prove or disprove
the scenario through observations. Finally, we briefly dis-
cuss the eAect of noise in the sky signal of CBR measure-
ments on the analysis of the three-point temperature
correlation function.

By taking into account nonlinear gravitational evolu-
tion, it is found that there are two terms which contribute
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to the CBR temperature anisotropy Although the Rees-Sciama contribution to the three-
point function will overwhelm the inflationary contribu-
tion in the model considered in [7], it is not true general-
ly. The generic form of the bispectrum in inflationary
models is given by

6T ++2 8$ d (4)
T 3 " l)rl

where the first term is the Sachs-Wolfe [6] effect due to
the gravitational potential at the last scattering surface,
and the second term is the generalized Rees-Sciama
effect [9] due the evolution of the gravitational potential
along the photon path. When we adopt a flat cosmologi-
cal model (n = 1), the quasinonlinear analysis gives
[s, lo, l I]

Pq(k ), k 2, k 3) =X [P~(k i )P~(k 2) +Pis(k 2)Pq(k 3)

(7)+P,(k, )P,(k, )],

p(k, rI) =p;(k)+ " J(k, k', k —k')k 2a(g)
14x 36

xy;(k')y;(k —k'), (5)

where p; is the gravitational potential at the last scatter-
ing surface, a(rl) =(g/rli) is the expansion factor of the
Universe after decoupling, and

where A, is a constant and P&=(p(k)p( —k)) is related to
the power spectrum of density perturbation P(k) simply
through P&(k) = 36P (k)k . The cubic self-interaction
model corresponds to the case where k —10 with a
scale invariant density perturbation spectrum, or equiv-
alently, P&(k) —k; the nonlinear gravitational evolu-
tion effect corresponds to the case where A. —2(1
+zd„)/9 —2.0 and P&(k) = k

Note that the two-point temperature correlation func-
tion is related to P& through

J(k, l, m) =2(l m)+ 5(k l)m + 5(k m)l
I 2 k

fO 3

C (" ")= 1 P (k) it. (m —s&g, d k

(2z) '
We first estimate the amplitude of the second term rela-
tive to the first term: Since the expansion factor a after
decoupling is —(1+zd„)—1000, the amplitude of the
gravitational potential at the last scattering surface is
around 10 as suggested by the measurement by the
Cosmic Background Explorer (COBE); thus the ratio of
the Rees-Sciama term to the Sachs-Wolfe term is of or-
der 0.01-0.1. As the nonlinear effects are contained in

the Rees-Sciama term, it is this term that contributes
significantly to the three-point correlation function. For
comparison, the nonlinear term considered in [7] is 10
times smaller than the linear term. This is a potential
problem of testing inflationary models through the three-
point temperature correlation function. To be observable
the amplitude of the non-Gaussianity produced in these
models has to be large enough so that the gravitational
evolution cannot completely dominate.

The three-point correlation function calculated from the
bispectrum given by Eq. (7) is

&T(m, n, l) =31[C2(m, n) C2(n, l)+ C2(m, n) C2(m, l)

+c,(m, i)c,(fi, i)] . (9)

This is a theoretical relation between three-point and
two-point functions since the finite-beam size efects have
not been taken into account yet. The formal treatment of
the finite-beam efl'ect in the CBR experiment can be
found in [12,13]. The beam can be well approximated as
a Gaussian,

(lm —nl o) = e
—Im —s

2EO'
(lo)

JLC3™,n, l, o) = dn~dnzdn3f(lm —m'l, o)f(ln —n

and the observed temperature correlation function will be
the convolution of the theoretical correlation (infinite thin

beam) with the beam, which is

'l, ~)f(li —i'l, o)C3(m', n', k, o) .

C2(m, n) =Qci(2l+1)PI(m n) .
I

For a power law spectrum P(k) —k", Ci is given by
2

I (2l+n —1) I [(9—n)/2]
I (2l+5 n) I [(3—n)/2]—

1 Qrms
C( =—

5 Tp

For a special configuration of three beams where m n
=n I =I.m =cosa, the beam-smoothed three-point func-
tion is well approximated [7] as [C2(cosalo)] where
C2(cosalo) is the two-point function with the monopole,
dipole, and quadrupole terms removed. Since the three-
point function is the product of two-point functions, it has
a stronger dependence on the power spectra index n

Multipole expansion of the two-point function gives

! where Q„m, is the COBE-measured quadrupole [141 and

Tp is the black-body temperature of CBR. From the
analysis of the two-point correlation function, COBE can
only put a loose bound on the power spectra index [14]:
n =1.1+0.5. In Fig. 1, we plot the three-point function
for two different power spectra: a scale invariant n =1
spectrum and a "tilted" spectrum where n =0.7. Notice
how the three-point function depends strongly upon the
power spectra index. Thus it is anticipated that the
analysis of the three-point correlation function will put a
more stringent bound on n.

in order to test cosmological structure formation
scenarios through the three-point temperature correlation
function, we should have a clear handle on what various
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since the fluctuations in density and gravitational poten-
tial are generated by the critical fluctuations at the criti-
cal point of the phase transition, 8&/Bg =&8(ii —g~),
where g~ is the conformal time at the phase transition
point. Thus, in this late-time phase transition model, the
temperature anisotropy takes the following simple form:

20 40 60 80 100 120
angle (degree)

FIG. 1. The dependence of the three-point temperature
correlation on the power spectra index and angular separation.
The solid line is for a scale invariant density perturbation; the
dashed line is for a "tilted" spectrum with spectra index =0.7.

models predict. In the following, we will show that the
cosmological phase transition can produce distinctive an-
gular dependences other than the form given above.

Cosmological phase transitions are widely discussed in
the context of structure formation [1S]. In the case of a
primordial phase transition, the horizon size at the epoch
of phase transition is small and topological defects will
form according to the Kibble mechanism [16]. The
analysis of the three-point correlation for defect-induced
temperature anisotropy depends crucially on the evolution
of the defect network and the work along this line is still
in progress. In this paper, we will show that it is instruc-
tive to consider initially the three-point function in the
late-time phase transition (LTPT) scenario [17]. The
calculation is considerably simplified in LTPT models for
the following reasons: (1) The last scattering surface is
assumed smooth in LTPT models; thus temperature an-
isotropies are solely produced by the generalized Rees-
Sciama effect,

(is)l'3T/T =2y„-„,.

(2) For LTPT, the horizon size is large so that the finite
horizon-size effect is negligible. We can calculate the
three-point correlation function from symmetry con-
siderations. As pointed out by Polyakov [18], the three-
point correlation function of the fluctuating field y is
completely determined up to a dimensionless constant by
the conformal symmetry of the system at the critical
point. The explicit form for the three-point function is
given by

(3 ( P(x l ) lP(X2) IP(X3))
= riC2(x l~x2)C2(X2ix3)C2(X3 X I ) (16)

where c2(xl, x2) =(y(xl)y(X2)) is the two-point function
and g is a constant. In this Letter, we assume that the
gravitational potential p is directly proportional to the un-

derlying fluctuating field y. For this case, the three-point
temperature correlation function has the following simple
relation to the two-point function:

(T(m, n, l) =2 C2(m, fi)C2(n, l)C2(m, l), (i 7)

where 2 is a dimensionless constant. The full beam-
smearing effects of the three-point correlation function
given above are messy and we will report them elsewhere.
However, in the special case when m n =n / =/ m
=cosa, it can be approximated as [C2(cosaicr)], where
C2(cosaio) is the two-point function with finite-beam
width o, with monopole, dipole, and quadrupole terms
subtracted.

The results obtained from Eqs. (9) and (13) strongly
suggest that the general form of the three-point function,
expressed in terms of two-point functions, is given by

(T(m, n, /) =Q [C2(m, fi) C2(fi, 1 ) + C2(m, fi) C2(m, I )+ C2(m, I )C2(fi, l )] + & C2(m, fi) C2(fi, l )C2(m, l ),
where Q and A are constants. This is the archetype form
of the three-point correlation function that the experi-
mental analysis should be compared with.

The Gaussian character can be tested through the ex-
isting COBE and the forthcoming South Pole and balloon
CBR anisotropy data by the three-point temperature
correlation function. Tests for Gaussian behavior are in-
teresting and timely since the question is still unresolved.
For example, the recent MAX balloon experiments [19],
the new thirteen-points scan from the South Pole [20],
and the MSAM/GSFC balloon experiment [21] all seem
to indicate that on degree scales the sky CBR signals are
possibly not Gaussian distributed. Detailed statistical

analysis of the South Pole data set shows that the quality
of fit to non-Gaussian distributions is superior to the
quality of Gaussian assumptions for this data set [22].
Although at the present stage the experiments are incon-
clusive due to possible foreground contaminations, never-
theless they give us hope that the question of Gaussian
behavior might be resolved experimentally in the near fu-
ture. In this Letter, we focus on the COBE data al-
though the idea and method discussed can equally apply
to the South Pole and balloon experiments. The data set
from the COBE Differential Microwave Radiometers
should be suitable for carrying out this test. On the one
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hand, the beam width of COBE is 7, which is much
larger than the horizon size at decoupling ( —2 ). Most
nonlinear causal processes which may lead to non-
Gaussian signatures on the cosmic microwave back-
ground sky are smoothed out by the beam. On the other
hand, the COBE CMB map covers the whole sky. Thus,
the boundary effects will be minimized. However, the
detected sky signal contains both the intrinsic CBR tem-
perature fluctuation and the instrumental noises,

& Obs
T

BT

, CBR , noise

(19)

The signal to noise ratio of the COBE data is around 1:1
and this is typical in all current CBR temperature anisot-
ropy experiments. Thus, it is important to consider the
noise term seriously in the analysis of the three-point
correlation function. Even if future analysis of the
COBE data does find a nonvanishing three-point temper-
ature correlation, it may be due to the instrumental noise.
However, if one adopts the usual assumptions about the
noise term, i.e. , (1) the noise is random Gaussian noise
which is not correlated temporally or spatially, and (2)
the noise is not correlated with the CBR signal, then

gobs gcBR i (20)
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