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EfFective Wave Number for Transmission of Linear Waves
in One-Dimensional Media
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An approximate wave number formula is derived for one-dimensional wave transmission in linear
systems that are uniform on a large scale. It is a low-frequency approximation that coincides at
zero frequency with equivalent medium theory. The formula is evaluated for various lattice media
models for which exact calculation can also be made.

PACS numbers: 03.40.Kf, 11.50.—w, 43.20.+g

Waves propagating in one-dimensional nonuniform sys-
tems have been studied widely, both theoretically and
through simulation and experiment. Many different one-
dimensional systems are modeled by very similar wave
equations, systems such as compressional wave propa-
gation in a stratified elastic medium [1], extensional and
torsional waves in elastic rods [2], acoustic waves in Huid-

filled ducts [3], and surface waves in Huids [4—6]. Of spe-
cial interest are systems which appear uniform at a large
scale, but vary at a small scale. Examples of these are pe-
riodic systems or statistically homogeneous systems but
many other types are possible. Wave transmission in such
systems is qualitatively similar to the transmission of
waves in uniform dispersive systems. In the nonuniform
system the apparent attenuation and dispersion is caused
by the scattering of the wave from inhomogeneities which
both reduces the amplitude of the wave and delays its
arrival. The apparent attenuation of transmitted waves
due to scattering has long been known in seismology [7],
as has the close connection between apparent attenua-
tion and the theory of wave-function localization as first
noted in [8]. Many calculations of apparent attenuation
and wave number have been made, but generally these
apply to restricted types of systems, or are exact only
in the limit of small variations in the system parame-
ters [9—12]. The method outlined in this Letter is ex-
act in the low-frequency limit and is applied here to the
perfectly elastic wave equation. However, the addition
of attenuation or differing wave speeds for forward- and
backward-going waves is trivial (an example of the latter

is one-dimensional acoustics in a Huid-ulled duct with a
mean How).

The calculations in this Letter are based on the one-
dimensional elastic wave equation, which will be written
in the form

f = M(x) f, —
where f is the stress and velocity vector

f=(, I (2)

and M is the elastic matrix, comprising a density (p) and
a compliance (A),

Fourier transforming in time leads to the ordinary difFer-
ential equation

iu)M(x) f, —
dx

where u is the angular frequency.
The integral equation from which the effective wave

number derives comes from considering wave amplitudes,
which belong to the dual of the solution space of Eq. (4).
The dual equation (also in this case the adjoint equation)
1S

=

iaaf

tM(x),
d2:

where f t is a row vector.
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Consider another infinite one-dimensional material,
with coordinate y, and two locations in the original ma-
terial, a and x with a & x. The elastic matrix of the new
material is defined as being equal to M for a & y & x.
Outside of the interval [a, x] it is not necessary to define
the elastic matrix fully, only that the impedance has the
constant value of ( so that the material supports conven-
tional propagating waves. Transmission and reflection of
waves through the zone of varying impedance depends
on the two locations a and x. If a unit amplitude wave
is incident from y ( a, the transmitted wave in y & x is
defined to have amplitude 1/S(x, a). If a unit amplitude
wave is incident from y & x, the reflected wave in y ) x
is defined to be of amplitude R(x, a).

It may be shown that S and —SR are the components
of a solution to Eq. (5) in a basis that depends on (.
Writing

then

where

f" = (S —SR),

d
(S —SR) = iv) (S —SR)

—o. p l
Gx —p o r

(6)

(7)

Q(2:, a) = exp ~
iur a (u) du) S(z, a), (10)

and convert Eq. (7) into an integral equation, giving

The boundary conditions for S and B are

S(a, a) = 1, R(a, a) = 0.

Rather than work directly with S it is convenient to
use a function Q phase shifted by o,

Q(x, a) =1+~ Q(z, a)S (z)

p(y) exp i
2icu o(u)du idydz .

Equation (ll) is exact, no approximations having been
made. It is very similar to the integral equation from
which the Bremmer series may be derived. While the
Bremmer series arises from a decomposition into locally
defined forward- and backward-going waves, the decom-
position in (11) is with respect to a fixed basis. An im-

portant consequence of thi. s is that while the Bremmer
series involves the spatial derivative of the impedance,
Eq. (11) makes no assumptions about the diKerentiabil-
ity of ]o and A. Equation (ll) applies for systems where
the mean value of M is diagonalizable but M(x) is not
diagonalizable for any x, such as mechanical systems of
massless springs and rigid masses.

By allowing ( to vary spatially Eq. (7) may be gen-
eralized to include terms in the derivative of (. If ( is

1
chosen to be (p/A)~ then the Bremmer series equation
results [13]. Recent work in dissipative wave equations
also uses a decomposition that is not the local forward-
and backward-going wave decomposition. The basis used
is defined locally in terms of the nondissipative part of
the full equation [14,15], or is matched to a local basis
with constant dissipation [16].

The advantage of using Eq. (11) to derive a low-

frequency effective wave number is that if p and A are
bounded, then wp will be small for sufficiently small w.
To derive an effective wave number an approximate solu-
tion will be found to (ll) when the material parameters
p and A are approximately spatially invariant. In that
case Q(x, a) should approximately depend only on x —a.

The finite y integral in (11) can be written as the dif-
ference between two infinite integrals:

where

Q(x + a, a) = 1+~2
z=x+a lf 2+a

Q{z a) J(2(z z) —euP
l

2zcc a(u)du
]
J(z z d. a)) dz,

z r
(12)

I(u, v) = p(u)p(y) exp
i

2i~ o.(u))du) idy.
rv

I = (I(z, z)), & = {o),
the solution to which is

(»)
So long as I(z, z) exists, I(z, 2: + a) —I(z, z) will be
bounded, since p and A are approximately invariant. Also
I(z, z) will be approximately equal to its average value.
If the exponential term in (12) is approximated using an
averaged o, then

'i(d (7
Q(x+ a, a) —exp(iurox) i cos (kx) — sin(kx)

~

where

2uuIl ~
k =(dO 1+

(16)

(17)

Q(x+ a, a) = 1+ cu2 Q(z, a)
Converting back to the function S(2:,a) gives

where

x(1 —exp (2icuo [x+ a —z]))Idz, (14)
l(d 0

S(z, a) =
] ccs(( {z—a]) — sia (k{z —a])) . (18)

k
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Equation (18) has exactly the form for the inverse trans-
mission unc ionf t'on of a spatially constant (but dispersive
material between a an1 b t nd x sandwiched between two a-
spaceso a i eren mf d'K t aterial. It is reasonable therefore to

k th ffective wave number for transmission.
(A more sophisticated argument shows that a s ig y
more accurate va ue o1 of S(x a) comes from replacing the
globally averaged cr outside the square root in Eq. (
b the average of cr over the interval [a, x].)y eav

The effective wave number k is not unique y yel defined by
E . (17), since it depends on the choice of (; however, in
two limiting cases k is independent of (. q

' (

0. It mayis exac i pt 'f p and A are constant, even w en p
't k tendsalso be checked that in the low-frequency limit

to the wave number of the averaged medium, given y

p = 1.66, A =0.81. (22)

(Th rameters reproduce the conditions of Fig. 1ese para
of 5and trace a of Fig. 2 of [5]. In the terminology o [

cally, randomly, and according to the rules of Fibonacci
and Thue-Morse lattices. I shall show comparisons in t e
frequency an ime od t' d mains between exact calculations
and Eq. (17) for three of these arrangements (perio ic,
random, and Thue-Morse), with parameters chosen so as
to give resu ts simi ar o1

' '1 t those of the experiments. The
two elements have the same length (normalized to 1),
an one is c osd

'
hosen to have sound speed an impe ance

of 1 [and hence in terms of the parameters o q. ( ),
p = A = 1]. The other element has parameters

k = ((~) (~)) ' N =1.16, r = 1.43. (23)

11 (. It is clear therefore that k depends only weaklyfor a ~~. is c ear
on g, althou h, of course, in general values oof k for differ-
ent values of ( diverge from one another as the frequency
increases.

In addition, q i Ji is in, E . i17i
' '

qualitative agreement with
theor for periodic systems. If the material is pe-

real or ure
r . The wave numbers of Bloch modes in peri-imaginary. e wave

ctl and areodic e as ic sys ed' 1 t stems may be calculated exac y, a
aso ei er1 ther pure real or pure imaginary 17,18 .

There are two conditions under which q. ( )
not be expected to approximate the exact q. (xact E . &11~. First

z x diver es increasinglyas eth frequency increases, u z, x
as over allfrom ~

~ ~z, zi~.'I'
i& The error is small so long as o

intervals

[I (x) —(S)ldx «1

b d d then for any ( there will be an
w below which condition (20) is satisfied. The secon

condition is w en iz, zh Ii ~&does not exist. This condition
will be returned to in the examples.

ation to theAlthough for transmission an approximation
true transmission has been derived thah t has a similar
form to transmission through a uniform'f rm material, the
same is not true of reflection. Integrating Eq. (7) gives

Z j
lexp

i
1M

(21)

h 1 e of r given in Table I of [5] is inconsistent with
the observed transmission and phase velocity. ha g'

here has the same zero-frequency phase velocity as trace
a of Fig. 3 of [5].) In the calculation, g has been chosen
as e impeth ' cdance of the averaged medium, and so p is

the arra the+0.19. Integrating over one element of the array, e
left-hand side of (20) is equal to 1 for w 5.

There are two aspects to comparing exact and approx-
imate calculations of transmission; amplitude and phase.
%"hile amplitude is easiest to compare in the frequency
d ', h can be compared best by examining theomain, p ase ca
propagation of a pulse in the time domain.

Figure 1 shows the calculated transmission amplitude
h h 100 elements in the three arrangements. For

the random arrangement, the logarithmic mean a
taken over five realizations. Figure 2 shows the same cal-
culation using e apprth oximate wave number calculated

E (17). The features in the two figures agreeusing q.
closely although the positions of amplitude troughsclose y, a t

O. I—

Thue-Morse

scattering approximation, but in the medium with wave
number given by (17).

two types. The two types are of equal length but differe
in impeciance an sounci d nd speed. These elements were as-
sembled in four types of arrangements, namely, perio i-

0.01— Periodic

0.001
2 3 4

Angular frequency (m)

FIG. 1. An exact calculation of amplitude versus angular
frequency for transmission through 100 elements (amplitudes
have been cut off at 0.001).
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FIG. 2. A callculation of amplitude versus angular fre-
quency for transmission through 100 elements using Eq. (17)
(amplitudes have been cut off at 0.001).

verge as frequency increases. The most noticeable differ-
ence is in the width of the transmission gaps at approx-
imately w = 7r/2, vr. This is because the semi-infi 't
integral defining I(z, z) diverges, as alluded to above. In
t e time domain this difference is only seen some time
after the arrival of a pulse.

Figure 3 compares the propagation of a unit-height
Gaussian pulse through the three arrangements. The

1, in the angular frequency domain of 2. For each pair
of traces the lower trace shows an exact calculation the)

upper trace shows the calculation using the approximate
wave number. Five traces have been averaged for the
pulse through a random arrangement. The zero time for

the figure is the time a pulse would take through a uni-

form medium with the same averaged density and com-
l'p iance. The agreement is very good in all three cases up

until 20 time units after the main arrival time. After this
time the random arrangement shows a tail with uncorre-
lated variation. These tails differ for differing realizations
of the random distribution. In contrast the Thue-Morse
and periodic arrangements have tails that agree closely
for different choices of 100 elements out of the infinite
lattice distributions. For the periodic case the tail is)

qualitatively similar in the exact and approximate cal-
culations (a modulated wave), but with slightly different
frequencies. For a periodic distribution an exact calcu-
lation of group velocity can be made, and this compared
with the approximate formula. Figure 4 shows the exact
group velocity (solid line) and the approximated group
velocity (dashed line), with normalization by the group
velocity of the averaged medium. For the first transmis-
sion gap there is only appreciable difference at velocities
20'%%uo below the zero-frequency velocity, so these are the
components arriving 25 time units after the first arrival
in Fig. 3. The dispersion relations are, however, qualita-
tively very similar [the similarity becomes more apparent
if some intrinsic attenuation or slight disorder is added,
since I(z, z) will then always exist].

The derivation in this Letter has been restricted to
the one-dimensional elastic wave equation for which the
vector f has two elements. The extension to equations
for which f has more than two elements introduces some
complications, and is in general laborious (if f has four
elements then semi-infinite double, triple, and quadru-
ple correlation integrals are necessary, and effective wave
numbers must be derived that correspond to submatrices
of M. ) Work on this will be reported elsewhere.

This Letter has benefited from discussions with col-
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FIG. 3. Propagation of a Gaussian pulse through 100 ele-
ments as predicted using exact calculation (lower line of each
pair) and Eq. (17) (lower line). The time is synchronized to
the arrival time of a pulse in the averaged medium.

FIG, 4. A cornomparison of phase velocity calculated for the
periodic arrangement using exact calculation (solid line) and

q. (17) (dashed line). Velocities are normalized to the ve-
locity of the averaged medium.
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leagues, especially C. Chapman and M. de Hoop.
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