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Floppy Fluid Vesicles in Elongational Flow
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The behavior of self-avoiding fluid vesicles in elongational flow is studied using Monte Carlo
simulations and scaling arguments. The simulations are carried out for membranes with a very small
bending rigidity, in the free-draining approximation. We find that there is a gradual crossover from
self-avoiding branched-polymer to elongated linear-polymer behavior as the flow rate is increased.
At small flow rates, our results scale with the relaxation time of undisturbed branched polymers.
The scaling behavior is the same in both unidirectional and planar fiow geometries.
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Membranes are two-dimensional sheets of molecules
which form spontanously when amphiphiles or lipids are
added to water [1,2]. They usually form closed surfaces
called vesicles in order to prevent contact between the hy-
drocarbon chains of the lipid molecules and water. Since
membranes are (nearly) tensionless surfaces, the shape
of a vesicle is controlled by a delicate interplay between
thermal fluctuations, the elastic bending energy [3], the
osmotic pressure difFerence between the vesicle interior
and exterior, the pH of the solvent, and possible con-
straints such as Fixed volume or surface area. When the
persistence length [4] of the membrane is large compared
to the diameter of the vesicl" — which is the case for most
vesicles studied in experiment [5]—the vesicle shape min-
imizes the elastic energy, consistent with any constraints
on the area and volume. On the other hand, when the
persistence length is much smaller than the typical vesi-
cle size, the shape of the vesicle is controlled by thermal
fluctuations. Such floppy vesicles have indeed been ob-
served experimentally [6].

There has been considerable progress recently in un-
derstanding the statistical thermodynamics and struc-
ture of these systems (for reviews, see Refs. [7,8]). Little,
however, is known about their nonequilibrium behavior
and rheology. In this paper we present the first analysis
of the behavior of fluid vesicles embedded in an external
flow Beld. In particular, we consider the case of elonga-
tional flow. This type of flow field occurs, for example,
at the entry of a capillary. It represents a unidirectional
external perturbation which breaks the rotational invari-
ance of the bending Hamiltonian. It is one of the simplest
flow geometries to analyze since the vesicle still has a sta-
tionary probability distribution. This work is intended as
a fi.rst step towards understanding the behavior of vesi-
cles, liposomes, and erythrocytes [9,10] in more general
flow geometries.

The velocity Beld v of the solvent at position r can be
written in the general form

v(r) = I'(r)r.

The simplest nontrivial case is elongational (or exten-
sional) flow [ll], where the flow is incompressible, 7' v =
0, and the flow tensor I' is diagonal and independent of
r,

( s/2 0 0)I'=
i 0 —s/2 0

0 0
(2)

1
V[r] = rI'r, —

2
(4)

so that v(r) = 6'V/6r. Thus, we can define a new Hamil-
tonian,

'Hg = '4+ V,
and study the equilibrium thermodynamics of a vesicle
described by the Hamiltonian (5).

The behavior of dilute, flexible polymers in various

s is the flow rate. Such a flow Beld can be realized exper-
imentally by a system of two opposed capillaries, where
the solvent is pumped into (or sucked out of) both capil-
laries with the same flow rate [12]. When hydrodynamic
interactions are neglected —which we will do through-
out this paper —the flow of the solvent exerts a force
F(r) = rlv(r) on a piece of membrane located at r. Our
use of the free-draining approximation is motivated by
the complexity of the system under consideration. Any
more realistic model for vesicles has to take into account
the condition that no solvent flow occurs perpendicular
to the membrane. In the free-draining approximation,
the motion of a point R on the vesicle surface is thus
determined by the Langevin equation

—R, = v(B.) +0 b'8

Bt

where 'R[R] is the curvature Hamiltonian together with
self-avoidance constraints and g is a Gaussian white
noise. Here, we have absorbed the viscosity g of the sol-
vent into the flow rate s. For any flow with a symmetric,
space-independent flow tensor 1, the flow can be written
as the derivative of a potential
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types of flow fields has been studied extensively in recent
years [11].In elongational flow, the radius of gyration Rz
of a polymer consisting of N monomers shows the scaling
behavior [11,13]

(R (s N)) = N ""O(sN + "") (6)

for small flow rates, where, in three dimensions, vi;„
3/5 is the self-avoiding random walk exponent. The sim-

plest way to understand this scaling form is to note that
the flow rate s has the dimension of inverse time. Thus,
the product sw of the flow rate with the longest relaxation
time ~ is the appropriate scaling variable. The relaxation
time w is proportional to the time it takes for the polymer
to dift'use over a distance equal to its radius of gyration
[11], i.e. ,

r - (B,')/D - N'+"i- (7)

where D 1/N is the mobility of the entire chain in
Rouse dynamics. It has been suggested by de Gennes
[14] that a first-order coil-stretch transition occurs in
elongational flow, from an essentially undisturbed, coiled
polymer chain with the scaling behavior (6) at low flow

rates to a stretched, linear configuration at high flow

rates. The stretch-coil transition should occur at s
ii+ ""l. There is both experimental [15] and theo-

retical [16,17] evidence that a first-order stretch-coil tran-
sition does not occur. However, a crossover from coiled to
stretched configurations, or a fracture of the chain [17],
should take place at sv. 1.

We have performed extensive Monte Carlo simulations
for a simple tether-and-bead model of fluid vesicles in
elongational flow. The model consists of N spherical
beads of diameter o. = 1, which are connected by tethers
of length E = ~2 to form a two-dimensional, triangu-
lar network of spherical topology. A Monte Carlo step
(MCS) consists of an attempt to move all beads sequen-
tially by a random increment in the cube [ br, br]s, fol-—
lowed by an attempt to flip N randomly selected tethers.
Details of this simulation procedure can be found in Refs.
[18—22]. We choose br = 0.1 here, so that about 50'Po of
the position updates are accepted. We have simulated
vesicles with N = 127, 247, and 407 monomers. Av-

erages are taken over runs of (25—100)x10s MCS (per
monomer). To prevent the vesicle from leaving the cen-
ter of the flow during the simulation, the center of flow

is readjusted after each MCS to the center of mass of the
vesicle.

To characterize the conformation of a vesicle in elon-
gational flow, we study the eigenvalues Aq ( A2 & A3 of
the moment of inertia tensor,

17,p= —) (r, rp —r rp), (8)

where n, P c (z, y, z}, and the sum runs over all vertices
of a given configuration; r is the 0, component of the
center of mass for that configuration. In particular, we
calculate the radius of gyration,

(a', ) =) (~,),

the asphericity [23]

(~] + ~z + ~s (~1~2 + ~2~3 + ~3~1)) 1()
((Ag + A2 + As)2)

and the fluctuations of the radius of gyration,

xg = ((&,')') —((&,'))'.
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FIG. 1. Aspericity A3 as a function of the scaled flow rate
s(N —No)~, with p = 2 and No = 25. Data are shown for
N = 127 (o), N = 247 (x), and N = 407 ( ).

The asphericity A3 vanishes for completely spherical con-

formations, while L3 ~ 1 in the limit of very long cigar
shapes; in general, 0 & L3 ( 1.

It has been shown previously [20—22,24] that the scal-

ing behavior of fluid vesicles with small bending rigidities
z subject to sufFiciently small or vanishing pressure incre-
ments Lp belongs to the branched-polymer universality
class [25] which is characterized by a radius of gyration
exponent [26] vb~ = 1. When the elongational flow is
turned on, the radius of gyration and the asphericity As
increase. Thus, the vesicle becomes elongated, as ex-
pected. Our results as a function of the scaled flow rate
are shown in Figs. 1 and 2, for both uniaxial (s ) 0) and

planar (s ( 0) flow. For small How rates, the data are
consistent with the scaling form [26,27]

6, = 4(sN'r),
(R ) = N O(sN~), (12)

with p = 2 and v = vb~ = 1. In order to take finite
size corrections into account, N has been replaced by
N —No in the scaling argument of Eq. (12); a similar
shift in the N dependence of (Rg2) at s = 0 has also
been performed [22,28]. At flow rates s(N —No)~ 25—

75, a strong increase in A3 is observed, which signals a
crossover from a spherical to a cigar shape. Note that
during this initial elongation the radius of gyration only
increases by about a factor of 2. Only at larger flow

rates does the radius of gyration begin to increase more

strongly. In this region, the vesicle has only a very small

number of short branches, and it is reasonable to assume
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200 FIG. 3. Typical configurations of a vesicle with N = 407

monomers in elongational How. The How rates are 8 = 0.0003
(top) and s = 0.0005 (bottom).

FIG. 2. Scaled radius of gyration, (R~)(N —Ni) ", as a
function of the scaled flow rate s(N —No)~, with v = vbi, = 1,
p = 2, No ——25, and Nq ——30. Data are shown for N = 127
(o), N = 247 (x), and N = 407 (Cl). The inset shows the
linear-polymer scaling behavior (Rg) (N —Ni), as a function
of s(N —Np), with v = 2vi;„= 1.2, p = 1 + 2v~;„= 2.2,
No ——17, and N~ ——32.

that there is a crossover to linear-polymer behavior. In
this case, the scaling form would again be given by (12),
but with v = 2';„6/5 and p = 1 + 2v);„11/5. In
fact, the data do appear to scale in this way for large s
(see the inset in Fig. 2). Typical configurations for two
diferent flow rates are shown in Fig. 3.

To understand the scaling form (12), we have to
calculate the longest relaxation time of a self-avoiding
branched polymer. This can be done as follows. At large
length scales, a self-avoiding polymeric fractal can be de-
scribed by an eff'ective Gaussian Hamiltonian [29]

'R[R] = ) q R,~R ~.

There are N diff'erent cl vectors. Introducing the spectral
dimension d„we can replace the sum over wave vectors
by an integral,

(14)

which gives

—n ~1+2/de
&min (18)

Finally, we identify 2/df = vb~ = 1, which gives the
scaling form (12).

We want to emphasize that in the derivation of (18)
we have implicitly assumed that the connectivity of the
network does not change, i.e. , that the network remains
a branched polymer at these How rates. The problem can
also be approached from the opposite point of view that
the connectivity adjusts to the flow. In this case, the blob
argument [11,30] for linear polymers under traction can
be generalized to the present situation. Since the flow
field is inhomogeneous, a position-dependent blob radius
has to be used. This leads to the scaling behavior (18). It
also predicts that the polymer should be more strongly
stretched in the center of the chain [16], in agreement
with the configurations shown in Fig. 3. It is reassur-
ing to see that from the two arguments the same scaling
behavior (18) emerges.

Finally, we want to investigate the possibility of a coil-
stretched transition with increasing flow rate. In Fig. 4,
we show a scaling plot of the fluctuations of the radius of
gyration as a function of the scaled flow rate. For small

This implies that the level spacing must be 4q N
To determine the exponent cr in (13), we calculate the
radius of gyration,

CC

(R2) = dq ques
i 6/s A1

mls
min

(15)

OJZ
12

n = d, (l+ 2/df). (16)

With q~ &q and (R~)» ~ K, where df is the
fractal dimension, one arrives at [29] 0

-200 -100
I
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The relaxation time is then obtained from the generalized
Rouse equation,

(17)

FIG. 4. Scaled fluctuations of the radius of gyration,
(N —N2) b& g~, as a function of the scaled flow rate
s(N —No), with vb~ = 1, p = 2, No = 25, and N2 = 40.
Data are shown for N = 127 (o), N = 247 (x), and N = 407
( )
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flow rates, the data are consistent with the scaling form

yg ——N"'&=(sN~). The fluctuations have a maximum
at s(N —No)~ = 100, which is approximately where the
strongest increase of the radius of gyration is observed.
However, the peak height increases only very weakly with
increasing system size. A fit to the data gives y~ N~,
with P = 1.45 +0.15. For a first-order transition between
a coiled state, with (Rs) N, and a stretched state,
with (R2) N2, the radius distribution function, P(R2),
has two sharp peaks centered at the average values of B
in the two phases. In the limit of large system size, where
the peaks are well separated, the radius distribution can
be approximated by

P(R ) = — 6'(R —ciN ) + 6'(R —c2N ) (19)
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