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Spiral Breakup in Model Equations of Action Potential Propagation in Cardiac Tissue
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Two-variable model equations that capture some essential dynamical features of quantitative electro-
physiological models of cardiac tissue are introduced. In one dimension, these equations naturally repro-
duce an experimentally observed oscillatory pulse instability that causes an alternation in action poten-
tial duration. In two dimensions, spontaneous spiral breakup leading to a spatially disorganized electri-
cal wave activity is shown to occur as a direct consequence of this instability.

PACS numbers: 82.40.Fp, 87.90.+y

One possible mechanism which is currently believed to
be responsible for the sudden transition from ventricular
tachycardia to fibrillation is the spontaneous breakup of a
single spiral wave of electrical activity [1] into multiple
spirals leading to a turbulent wave behavior. There have
been several reports of irregular wave activity in theoreti-
cal studies of excitable media [2-4], the most quantita-
tive to date [3,4] being based on electrophysiological
models of heart-cell action potential [5,6]. They have
provided supportive theoretical evidence that spontaneous
spiral breakup may actually occur in cardiac tissue.
However, the dynamical origin of this breakup and the
condition for its occurrence have remained poorly under-
stood. Perhaps one of the reasons for this is that, due to
their complexity, electrophysiological models are not easi-
ly tackled analytically and are extremely difficult to simu-
late in more than one dimension (prohibitively so in three
dimensions).

The purpose of this Letter is twofold [7]. The first is to
introduce two-variable partial-diA'erential model equa-
tions of electrical wave propagation in cardiac tissue.
The second is to explain, within the context of these equa-
tions, the dynamical mechanism of spiral breakup and
pinpoint more precisely the condition for its occurrence.
The standard two-variable FitzHugh-Nagumo model
with a simple cubic nonlinearity [8], which has been the
main focus of recent theoretical investigations [9], is
known to support rigidly rotating spiral waves which are
unstable over a wide range of parameters. However, in

an isotropic continuous excitable media, this instability
has always been observed numerically to give rise to a
meandering motion of the spiral tip, but not to spontane-
ous spiral breakup leading to a complex wave behavior.
To construct the model equations we have therefore
chosen to use as a guide Noble's original adaptation [5]
of the classic Hodgkin-Huxley equations [10] to the
Purkinje fiber. Although intended to describe this fiber,
the Noble model already reproduces some basic proper-
ties of the action potential of bulk myocardium tissue
[11],and appears to support spiral waves which break up
spontaneously [3]. For this reason it provides a natural
starting point for identifying the minimum ingredients
necessary for this breakup. The four-variable Noble
model takes the form

C =& E —(E —EN, )[gN, m h+gN, ]

—(E EK)[gtr, (E)+g/, (n)],
=ly (E) y]/ry(E—), y=h, m, n,

where E is measured in mV and C is the membrane ca-
pacitance. The variables m and h describe the dynamics
of the fast sodium ion (Na+) channel and the variable n

the dynamics of a slow potassium ion (K+) channel Kq.
The second and third terms on the right-hand side of Eq.
(1) represent the membrane currents associated with
these channels. The various parameters and functional
dependencies of the model are given in Ref. [5]. To
change the character of the above equations from spon-
taneously oscillatory to excitable we have used the pro-
cedure of Ref. [3] which consists in slightly lowering the
value of gN, from its standard value 0.14 to 0.132. An
isolated pulse obtained by numerically solving Eqs. (1)
and (2) is displayed in Fig. 1(a). The associated nullcline
structure of the Noble model is shown in Fig. 1(b). The
latter was constructed by adiabatically eliminating the
fast variables h and rn of the Na current which vary slow-

ly in time on the 2-3 and 4-1 portions of the cycle. Ac-
cordingly, the E-nullcline is defined by fF. (E,n) =0,
where fE(E,n) is equal to the right-hand side of Eq. (1)
(without the Laplacian term), with h =h (E) and
m =m (E). The n-nullcline is defined by f„(E,n) =0,
where f„(E,n) is equal to the right-hand side of Eq. (2)
with y=n. There are three essential properties of the
Noble which are absent in the standard FitzHugh-
Nagumo model.

(i) Wave front insensitivi-ty. —The first property is the
extremely weak dependence of the wave-front velocity
cF(n) on the slow variable n which controls the action po-
tential duration (APD) (2-3 in Fig. 1). In the Fitz-
Hugh-Nagumo model, cF(n) is known to be a monoto-
nously decreasing function of n which, at leading order in

e, vanishes at a stall value ng=0. The corresponding
function cF(n) was calculated by numerically integrating
Eqs. (1) and (2) for frozen values of n varying between
n =no=0.084 and n=1, and found to only change by a
few percent over this interval. This insensitivity is a
direct consequence of the wave-front dynamics being con-
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FIG. 2. Characteristic pulse structure generated by the mod-
el equations for small e and large M.
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3 differential equation [16].
Two-variable model equations that capture qualitative-

ly all of the above three essential properties take the form

e =e V'E —EBE

0.0--
I I I I I I I I i I I I I I I i « I

E 2

[1 —tanh(E —3)], (3)
2
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E (mV) =f„(E,n) =B(E—1) —n, (4)

FIG. l. (a) E(t) (solid line) and —80+60n(t) (dashed line
on the same scale) at a fixed position and, upper right, charac-
teristic alternation in APD for a pulse propagating in a ring; (b)
E-nullciine (solid line) and n-nullcline (dashed line).

trolled predominantly by the fast variables (m, h) of the
Na current.

(ii) Phase wave back. —-The second property relates to
the fact that the wave back (3-4 in Fig. 1) is always ini-
tiated at the limit point where the rightmost stable
branch and unstable middle branch of the E-nullcline
meet [point 3 in Fig. 1(b)]. The position of the wave
hack Xtt(t) is therefore defined by the constant phase
condition, n(Xtt(t), t) =ntt, where BfF(E,ntt)/BE
=fE(E,na) =0. As a direct consequence, the repolariza-
tion period of the wave back (rtt 3-4) is much longe——r
than the fast depolarization period of the wave front
(r F = 1-2). —

(iii) Alternans The th. i—rd property is the presence of
a known oscillatory pulse instability which occurs on one
wavelength of the plane wave train when the train period
becomes less than a minimum value T;„(=250msec in
the Noble model). This instability causes the duration of
the action potential to alternate in time as shown in Fig.
1. These alternans in APD have been observed in period-
ically driven aggregates of ventricular cells [12] and in
rings of cardiac tissue [13], as well as in numerical simu-
lations of the Beeler-Reuter cable equations [14-16].
They have also been modeled previously in terms of maps
[12,14, 17] and a recently proposed neutral delay-

where 0(x) is the standard Heaviside step function, e is

the usual parameter characterizing the abruptness of ex-
citation, and the constant 2 =1.5415 is chosen such that
Bfe(E,ntt)/BE =fF(E,ntt) =0 [fE(E,n) now defined by
the right-hand side of Eq. (3) without the Laplacian].
These equations have an excitable fixed point (Eo,no)
=(0,0) and a nullcline structure qualitatively similar to
that of Fig. 1(b) over the range E =(0,4). A crucial ele-
ment is that the wave-front insensitivity is controlled by
the parameter M. In the limit e«1 and M »1, the front
velocity is easily shown to become independent of n [with
dcF (n)/dn —1/M] and to approach a step function
cF(n) =co0(ntt —n). The parameter na controls the APD
of the isolated pulse (2-3) which takes the simple form
Do= —ln(1 —ntt) in the same limit and, generally, in-

creases with n~. The phase-wave character of the back
(3-4) is implicit in the nullcline structure of the model
with the widths of the wave-front and the wave-back
scaling, respectively, as e and (e/M) ', unlike in the
FitzHugh-Nagumo model where both scale as e. The
characteristic pulse structure generated by Eqs. (3) and
(4) is shown in Fig. 2. Finally, the threshold of the oscil-
latory pulse instability can be determined exactly in the
limit e«1 and M&) 1 using the standard singular pertur-
bation approach used previously in the context of the
FitzHugh-Nagumo model [18]. A straightforward calcu-
lation [7] yields that the pulse dynamics in that limit is
governed by the one-dimensional map nF =R(1 —nF),
where nF is the value of the slow variable n on the wave
front at the jth turn in a one-dimensional ring of size coT,
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and R =ntte /(I —n8). This map has a period dou-
bling subcritical bifurcation at R =1 which yields at once
the relations T;„=0for ng & 2 and

ngT;„(ntt)= ln
1
—ng

for ng) 2

These relations define the neutral stability boundary of
the oscillatory pulse instability in the (n&, T) plane at
leading order in e and I/M. Note that for ntt & —,

' the
pulse is always stable at this order. Numerical simulation
of Eqs. (3) and (4) indicates that finite e and I/M correc-
tions change the nature of the bifurcation from subcriti-
cal to supercritical and simultaneously shift the oscillato-
ry dynamics away from exact period doubling. A stable
pulse dynamics with quasiperiodically modulated alter-
nans in APD is therefore observed in the present model
(Fig. 3) over a range of circulation period Tt,„&T
& T;„(with Tt„~ Tm;„ in the small e large M limit).
For periods less than the termination period Tt„,a pulse
can no longer propagate. The existence of this period
range of "stable alternans" is in agreement with previous
studies of electrophysiological models [14,16,17] and our
numerical investigation of the Noble model whereTt„=210 msec.

The preceding analysis provides the essential basis for
our numerical investigation of spiral breakup in two di-
mensions. Several crucial questions regarding this break-
up immediately come to mind: (i) How and when does it
occur? (ii) What type of wave behavior does it generate?
(iii) What is the role of the boundaries and the system

size? (iv) What is the role of meander? We summarize
here the answers to these interrelated questions, some
definite and others still partial, that we have obtained by
extensive numerical simulations of Eqs. (3) and (4) on
large square lattices with no Aux boundary condition.
The answer to the first question is that spiral breakup
occurs as a direct consequence of the oscillatory pulse in-

stability [19] when the spiral rotation period Ts, deter-
mined numerically by calculating the average cycle
length at a fixed position away from the tip, becomes less
than some critical value TgU which falls inside the range
Tt„&TzU & T;„.The precise value of TBU within this
range was found to depend sensitively on the initial condi-
tions, the lattice size, and the values of the model param-
eters t. , M, and nz, in a way which we do not presently
know how to predict systematically aside from numerical
simulation. However, what is definite in the present mod-
el is that alternans in APD of su%ciently large amplitude
can break up an isolated rotating spiral and that Tt, „

and T;„provide useful bounds for TttU. A typical time
sequence illustrating the breakup mechanism is shown in

Fig. 4. The alternation of APD causes the width of the
excited region to vary nonuniformly along the spiral
boundary and, thus, breakup to take place where the
front is thinnest. In addition, we found that T~ depends
weakly on ntt (equivalently on the APD of the isolated
pulse) but scales proportionally to e' for small e which
explains why spiral breakup always occurred upon de-
creasing t.' at fixed ng) 2, in which case T;„is finite

[Eq. (5)], or equivalently by increasing ntt at fixed e. It is

interesting to note that this e' scaling of T~ diA'ers from
the e' Fife s scaling, which is now well established both
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FIG. 3. Oscillatory pulse dynamics observed in simulation of
the model equations in a ring of size L =0.216 with @=0.009,
M =30, and ntt =0.525. Following the notation of Ref. 1131,we
have plotted the following as a function of the number of turns
in the ring: the APD, defined as the time interval between the
passage of the wave front and wave back at a fixed position with
E=2 as threshold, the diastolic interval (Dl), defined as the
time interval between the passage of the preceding wave back
and the next wave front, and the cycle length (CL), defined as
the interval between the passage of two successive wave fronts.

FIG. 4. Time sequence illustrating the dynamical mechanism
of spiral breakup in a square lattice of side L =1.15 with
n8=0. 507, M=30, and a=0.009: t =0 (upper left), t =0.09
(upper right), t =0.135 (lower left), and t =1.8 (lower right);
the average rotation period is Tg=0. 165. Dark and white re-
gions correspond, respectively, to excited and recovery regions.
The location where breakup is initiated at t =0.09 is indicated
by an arrow.
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numerically and analytically for the FitzHugh-Nagumo
model [9]. Its existence is almost certainly related to the
presence of a phase-wave back, whose width also scales as
e', but a quantitative theory of spiral period selection
for this new class of model equations remains to be
developed to understand this scaling. In regard to ques-
tion (ii), we observed in all simulations performed until
now that breakup of an isolated spira1 led to the genera-
tion of additional spirals (Fig. 4) which, after a compli-
cated dynamical transient lasting between 10 and 100
basic rotation periods, settled into a "spiral glass" state in

which an ensemble of spirals with randomly distributed
centers remains essentially frozen in space, aside from a
localized meandering motion of the individual tips. It
should be emphasized that this type of fibrillatory state is
not spatiotemporally chaotic but nonetheless generates
complex reentrant pathways of electrical activity which,
I'n vr'vo, cauld inhibit the heart muscle from pumping
coherently and lead to sudden death. In regard to ques-
tion (iii), we found that spirals were generally attracted
to the boundaries and, more importantly, that for a given
set of parameters breakup could be suppressed by choos-
ing the system size smaller than some minimum size com-
parable to a spiral wavelength. This suppression is con-
sistent with the fact that breakup takes place away from
the spiral tip and could explain why spontaneous spiral
breakup has not been observed in the experiments carried
out to date [I] on relatively small pieces of heart tissue.
Finally, in regard to question (iv), we observed the usual

type of spiral meander observed in the FitzHugh-
Nagumo model to be present before, in the single spiral
state, and after breakup, in the spira1 glass state. This
meander may play an auxiliary role in the breakup mech-
anism which remains to be explored. However, what
seems certain at present is that it does not alone induce
breakup. This was clearly demonstrated by simulation
runs with ntt ( —,

' where alternans were absent (i.e. ,
Tm;, =0), and breakup was never observed down to very
small values of t.'.

To conclude we note that other important eft'ects (such
as spatial inhomogeneities, electromechanical coupling,
etc. ) not included in the present model may also play an
important role in the transition from ventricular tachy-
cardia to fibrillation. However, without these added com-
plications, alternans already su%ce to induce a spatially
disorganized electrical wave activity and provide a natu-
ral mechanism for this transition.
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