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Thermal Transport in a Charged Bose Gas and in High-T, Oxides
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Transport properties of two-dimensional charged bosons in the normal and superconducting state are
derived. The Wiedemann-Franz law and the Lorentz number are obtained for the normal state. A
strong suppression of the quasiparticle scattering rate and a strong enhancement of the thermal conduc-
tivity in the superconducting state are found. Temperature dependence of the in-plane thermal conduc-
tivity of YBCO crystals is explained.
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The physics of charged Bose liquids has become of par-
ticular interest recently in the context of theories of
high-temperature superconductors. Some microscopic
models [1-3] suggest that charged bosons, formed by
strong electron-phonon and electron-electron exchange
interactions (lattice and spin bipolarons), might be re-
sponsible for the puzzling thermodynamic and kinetic
properties of high-T, oxides. Such characteristic features
of high-T, copper-based superconductors as the curious
absence of coherent effects and of the Korringa law in the
nuclear spin relaxation rate, the unexpected peak of low-

frequency conductivity, linear in T resistivity are indica-
tive of charged bosons [4]. One should add here the heat
capacity [5,6], which is reminiscent of He-4 and the
unusual temperature dependencies of lower and upper
critical fields which, however, can be expected for
charged bosons [5]. The approach based on the hy-
pothesis of preformed 2e bosons has been used even for
the insulating state to explain the physics of the
insulator-superconductor transition in the CuOq-based
materials [7].

Among other properties, thermal conductivity shows an
unusual temperature behavior [8], which is just opposite
to that predicted by the standard BCS theory. The well
known in-plane thermal conductivity enhancement in the
superconducting state, which is a general property of
high-T, oxides, is commonly attributed to the lattice con-
tribution, which is limited by the phonon-electron scatter-
ing. However, in view of the recent measurements on
high-quality crystals [9,10] this explanation is now reject-
ed [10]. Unlike previous analyses, Yu et al. [10] attribut-
ed the observed rapid rise in the superconducting-state
thermal conductivity to the electronic contribution with a
strongly suppressed scattering rate. A power-law scatter-
ing rate within this phenomenological approach is com-
patible with the d-wave pairing as it is expected in the
nearly antiferromagnetic Fermi-liquid theory [11]. How-
ever, the normal-state thermal conductivity poses a prob-
lem. With the electronic Lorentz number and the experi-
mental value of resistivity one obtains a sizable electronic
contribution to the normal-state thermal conductivity, ap-
proximately half of the measured value. This clearly con-
tradicts the near equality of the in-plane thermal conduc-

co(k) =E,Jk/q, +k /q, , (2)

with E, =q, /2m and q, =qd [no(T)/n] ' . Here qd
=(32ne nm/eo) 'I is a two-dimensional screening wave
number. The boson density is n.

The Bogoliubov approximation is valid for a weak in-
teraction such that [13,14]

r, =+16m e /trneo ( 1, (3)

and for a restricted temperature range close to T=O.
However, one can extend the mean-field expression Eq.
(1) up to T=T, in a qualitative analysis taking into ac-
count the depletion of the superAuid component with tem-
perature. For weakly interacting near-2D bosons one ob-
tains with logarithmic accuracy (for details see [4, 15,16])

tivity above 100 K in the insulating and 90-K crystals,
suggesting the more radical viewpoint that the electronic
contribution is negligible in both systems [121. This
would be the case according to the Wiedemann-Franz ra-
tio if the carriers have charge 2e.

In this Letter we derive transport relaxation times for
near-two-dimensional charged bosons in the normal and
superconducting states and propose a possible microscop-
ic explanation of the main puzzling features of the nor-
mal- and superconducting-state thermal conductivity of
high-T, oxides. Our explanation is quite compatible with
the phenomenological model proposed by Yu et al. [10].
The fundamental diAerence is that the carriers in our
model are bosons with charge 2e. We find the infinite
thermal conductivity of near-2D bosons, scattered by a
short-range potential, which is of general interest.

The excitation spectrum of a Bose gas is described
within the Bogoliubov approximation by the following ex-
pression:

to(k) =Qk /4m + V(k)no(T)k /m .

Here V(k) is the Fourier component of the boson-boson
interaction, m is the boson effective mass, and no(T) is
the superIIuid density. For 2D charged bosons V(k)
=8tre /keo, with eo being the dielectric constant of the
background, 2e being a bosonic charge, and Eq. (1) may
be written as [13,14]
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ktt T, =urn/mL,

np =n(1 —t), (s)

H, =g v(k, k')ak ak,
k, k'

(6)

with bq = (a k+A ka k)/ J I —A~ is a free boson annihi-
lation operator, A~=[tp(k) —k /2m]/V(k)np —

1 a co-
efticient of the Bogoliubov transformation, and

v. (k —k') (i+A,A, )
(k, k') =

e(k —k', 0)J(l —A~)(1 —A~ )
(7)

a screened scattering potential. Here vp(q) is a Fourier
component of a bare (unscreened) single boson-impurity
or boson-acoustic phonon interaction. The latter can be
treated as practically elastic [4] if the temperature is not
extremely low: T & T*, where kttT* =ms /2 with s be-
ing the sound velocity. T* is less than 10 K even for rel-

where L is a large logarithm, depending on the scattering
amplitude [15,16] and (or) on the interplane hopping if
3D corrections to the energy spectrum are taken into ac-
count [4], t =T/T, is a reduced temperature, ktt is the
Boltzmann constant, and 6 = 1.

The elastic scattering of excitations is described by the
H amiltonian

atively heavy bosons with m =10m, . The RPA static
dielectric function of a 2D Bose condensate (T=O) was
derived by Pines and Frankel [13]. We slightly improve
their result here by replacing the free energy spectrum by
the normalized one, Eq. (2), in the polarization loop:

e(q, O) =1+V(q)g

The contribution of excitations to the screening is negligi-
ble compared with that of the superfluid component for
small q & q, . In the normal state one can take e(q, O) = 1

because the relevant momentum transfer q is of the order
of the boson momentum itself, which is large compared
with qq for T & T, while r, is small, Eq. (3).

With the Fermi "golden rule" and the Boltzmann
equation one obtains the elastic transport relaxation rate
for excitations in the usual way:

kx—
I/r (k) =2~+

kxk'

I

v (k, k')8(cp(k) —tp(k') ) . (io)

With the free energy spectrum in the denominator of Eq.
(8) one obtains an even stronger suppression of the relax-
ation rate in the superconducting state. The screening by
superfluid bosons (f~ =np6t, p) yields

e(q, 0) =1+q, E,/qto(q) .

1.(k)
k dk 1+Ak vp(k 42[1 —cos(IP)])

dp[ I —cos(p) ]
tr dtp(k) 1

—At "p e2(k 42[I —cos(y)],0)

First we calculate the integral, Eq. (11), in the normal
state or for the high-energy excitations with k ) q, in the
superconducting state. In these cases E(q, 0) =1 and
to(k) =k /2m. For the scattering by acoustic phonons
[4] (or by point defects) vp is q independent (vp =C«t)
and r„is k independent:

and

, ( )
3z
32 k

' 3/2.;.(k) . (is)

r ac
= I /mC«t (i2)

where C,, is a temperature-independent constant. This
result, Eq. (12), can explain the linear resistivity of doped
Cu-based oxides [4]. For charged impurities vp (q )
=C;I/q and the relaxtion time shows a canonical
Coulomb-scattering behavior, increasing with energy

(k) = 2k
mCim

(i3)

r

, (k) I Str qs

256

' 3/2

~ac (i4)

with C; being proportional to the number of impurities.
In the superconducting state for low-energy Bogoliubov
excitations with k & q, and to(k) =E,Jk/q, we can put
e(q, O) =(q, /q) and At, =1 —4(k/q, )'i to obtain from
Eq. (11)

Both r„and i; show a sharp enhancement in the super-
conducting state for low-energy excitations, compared
with the normal state. This enhancement (proportional
to k 3t ) is explained by the small phase volume, propor-
tional to k, which is accessible for the scattering, and by a
large group velocity of the 2D Bogoliubov mode, dto/dk,
which is divergent as k ' in the long-wave limit.

One can see from Eq. (14) that in the superconducting
state the acoustic relaxation time is strongly divergent in
the long-wave limit. The charged impurity relaxation
time, Eqs. (13) and (15), falls down linearly with the en-
ergy lowering both in the normal and in the supercon-
ducting state. As a result the total relaxation time

&ac&im

&ac+ &im

has a rather sharp maximum in the superconducting state
of good quality crystals at km, „=qdJSC;m/48qpC„t:
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256 k'+5C; /16C„t
(i7)

To calculate the thermal conductivity due to carriers in

the normal state, K„, one can apply the standard kinetic
theory, developed for metals and semiconductors, replac-
ing the Fermi-distribution function by the Bose distribu-
tion. As a result one obtains the Wiedemann-Franz law:

K„=LaoT,
where cr =4e nr„/m is the normal-state conductivity and

r ' 2
ka 38p(z)82(z) —48i (z)Lg=
2e 8p'(z )

(i 9)

is a bosonic Lorentz number, and

8,(z) = x dx
exp(x —z) —

1
(20)

with zkqT being a chemical potential. The scattering by
acoustic phonons is assumed. In the classical high-
temperature limit, T)) T„we obtain

2
kg

Lg =2
2e

(2i)

The same numerical coefficient (=2) is obtained for
three-dimensional nondegenerate carriers, scattered by
acoustic phonons. The bosonic Lorentz number, Eq.
(21), should be compared with the electronic one, L,
=tr kit/3e, which does not depend on the scattering
mechanism and on the dimensionality for degenerate car-
riers. Their ratio is very small mainly due to the double
elementary charge of a boson and is given by

La/L, =6/4n (22)

which is approximately 0.152.
This fact can explain the near equality of the thermal

conductivity of superconducting and insulating crystals of
YBCO in the temperature range above 100 K, as has
been discussed by one of us [17]. With the electronic
Lorentz number one obtains the carrier temperature-
independent contribution of approximately 4 W/mK (a
direction), which is half of the total one [10]. On the
other hand, with the bosonic Lorentz number the carrier
contribution is negligible. The mean free path of phonons
in both crystals might be of the same value, because the
thermal phonons practically are not scattered by bosons.
The number of bosons which can scatter thermal phonons
is exponentially small, being proportional to exp( —T/
T*). We note that the near equality of thermal conduc-
tivity of superconducting and insulating crystals above
100 K also eliminates the possibility of bosonic excita-
tions with charge e such as holons.

With decreasing temperature the bosonic Lorentz num-
ber falls. At T=T„ the chemical potential z =0 and
8p(z) =~ in Eq. (19). If one takes into account three-
dimensional corrections, then 8p(0) =L, and La is loga-

where fg is the Bose-Einstein distribution with zero
chemical potential. Substitution of Eqs. (2) and (17)
into Eq. (23) finally yields the superconducting-state
thermal conductivity:

(1 —t)',"" dxx4
Kso

t ' "P sinh'(x) [x4+ g(I —t)'/t'1
(24)

where K,p=K„15tr(Lr, ) /1024 with K„determined by
the classical expression, Eq. (18), with Ltt =2(ka/2e) .
We replaced the upper limit in the integral of Eq. (24),
which is E,/kttT, by the infinity, because the integration
region is restricted by the distribution function and by the
power-law singularity of the integrated function if param-
eter g is small:

rt=5C; L (Lr, ) /64zC, ,n. (25)

Thus in a perfect crystal with @=0 two-dimensional bo-
sons show infinite thermal conductivity (K, =~). This is

quite unexpected compared with the usual s-wave BCS
superconductor, which has exponentially suppressed
thermal conductivity due to a gap in the excitation spec-
trum. (As we have mentioned above this is not applied to
a d-wave BCS pairing. )

The low-temperature behavior of K, is given by (t « 1)

96$(5)t ' 100t '
Kso g g

Close to T, we obtain from Eq. (24) (1 —t «1)
(1 —t)"

1/4
(27)

In the intermediate temperature region K, has a max-
imum, Fig. 1, the height of which depends on the charged
impurity concentration. The position of the maximum
also depends on the quality of the crystal (ti), but this
dependence is very weak. These findings are in global
qualitative agreement with the experimental data [9,
10,12]. For a quantitative comparison we need to sub-
tract the lattice contribution, which is less than 30% of
the total value in the superconducting region, as one can

rithmically small at T = T,.
The situation changes drastically in the superconduct-

ing state. Because of the above-mentioned singularity of
the group velocity, which is a common feature of surface
waves, the 2D Bogoliubov mode is a perfect heat carrier.
In fact, its thermal conductivity is infinite, if the short-
range potential including phonons is operating alone.
The scattering by charged impurities restricts the 2D bo-
sonic thermal conductivity in the superconducting state.
To show this we write the expression for the heat How,
taking into account that in the superconducting state both
the chemical and the electrical potentials equal zero:

r

g = —g ~(k) "(k) "
VT (23)

dk itT dk
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FIG. l. Temperature dependence of the thermal conductivity
of near 2D bosons in the superconducting state for different
concentrations of charged impurities, g. Il:, =~ in a perfect
crystal with tI=0. Inset: Experimental results after Ref. [9].

estimate using the measurements by Hagen, Wang, and
Ong (see Fig. 3 of Ref. [121) on insulating crystals of
YBCO. This contribution is a smooth function slowly de-
creasing with temperature decreasing below 50 K. Thus
it does not inAuence the main unusual features of the su-
perconducing heat transport, a sharp rise just below T,
with a maximum approximately at half T, and a power-
law fall in the low-temperature region, which are in good
agreement with our theoretical result, Eq. (24), and Fig.
1.

Of course, the enhancement eA'ect of thermal conduc-
tivity in a good quality quasi-two-dimensional crystal dis-
cussed above is not

influenced

by the approximation
made. As an example, bosons must have hard core and
this boundary condition in 2D leads to physics that is not
present in the Bogoliubov approximation. However, the
eA'ect under discussion is due to long-wave excitations,
which are not inAuenced by hard core. The 3D correc-
tions to the energy spectrum restrict the maximum value
of K, as well. We assume in our discussion that the
scattering by charged impurities is more important.

We should also mention that two-dimensional plasmon
excitations of a normal and superconducting charged Fer-
mi liquid show the divergent behavior of their group ve-
locity, identical to that of the Bogoliubov mode of a 2D
Bose gas. However, diAerent from the Bogoliubov mode,
they are not one-particle excitations but the poles of a
two-particle propagator. In general they are dumped by
one-particle excitations.

The good overall agreement between our theoretical
predictions and numerous experimental results (see also
Refs. [1-5] and for a recent review [17,18]) reinforces
the supposition that the charge carriers in the new high-
T, materials are charged (2e) bosons below and above T,
as they must be if the BCS analysis is carried into the
strong-coupling region [18]. However, some experimen-
tal observations remain to be explained with the Bose-
liquid ground state, among them a "Fermi edge" mea-

sured with angle-resolved photoemission spectroscopy and
the de Haas-van Alphen eff'ect in pulsed magnetic fields.
Their possible interpretation within the proposed model
was already discussed by us in Ref. [19].

In summary, we derive the transport relaxation times
of charged bosons in the normal and superconducting
state. We find a strong suppression of the relaxation rate
and an enhancement of the thermal conductivity in the
superconducting state. In a perfect crystal with a low

charged impurity concentration this enhancement might
be huge. We predict the infinite thermal conductivity of
near-two-dimensional bosons, scattered by a short-range
potential, including phonons. The normal-state thermal
conductivity of charged bosons (charged 2e) is many
times smaller than that of electrons with the same electri-
cal conductivity. We explain the main puzzling features
of the thermal conductivity of metal oxides, in particular,
the near equality in insulating and superconducting crys-
tals above 100 K and the pronounced maximum below
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