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Magnetic polarons in magnetically disordered systems (for brevity, spin-glass polarons) are in one
respect very unlike other polarons: Usual polaron hopping at low T proceeds via tunneling, and these po-
larons do not aAect the T dependence of the hopping rate, while the spin-glass polaron tunneling is

suppressed by the disorder, and their hopping proceeds via activation for all T. It gives rise to the reen-

trance of the simple activated T dependence of variable range hopping conductivity at very low T. Re-
cent experiments in CdMnTe are discussed.

PACS numbers: 72.20.—i, 71.30.+h, 75.50, Lk, 75.50.pp

o(T) ec exp( —EH/T), (2)

was observed at very low T [1-3]. This reentrance effect
was removed in a strong magnetic field [1,2,9], where the
VRH law (1) persisted at the lowest T studied [10].

It is tempting to relate the law (2) to the hard gap in

the density of states, i.e., N(e) =0 for
The Coulomb interaction can give rise to a hard gap [11],
but in our case it should be due to a coupling of electrons
to magnetic degrees of freedom [9], which can be frozen

by the field. However, as we will see, this simple idea is

tricky, and it is rather good luck that this scenario
(though in a modified form) survives in some cases.

In this Letter we consider only a semimagnetic semi-
conductor Cdi —„Mn„Te:In (with x =0.09), for which a
reentrance effect at low T & 1 K was observed in a wide

range of donor concentrations [1], and which is the sim-
plest model for the phenomenon under study. The usual
explanation of data [1] lies within a frame of the above
hard-gap scenario: An electron, bound to a particular In
donor, polarizes the spins of Mn + ions within a radius (
of a localized state, forming a bound magnetic polaron
(BMP) (the existence of a BMP in this compound is well

established; see [12]). Adding a bare electron to the sys-

Recent findings [1,2] of a simple activation T depen-
dence of conductivity o. at very low T in a few semicon-
ductors has renewed interest in the "magnetic hard
gaps,

" which were observed in a number of substances
[3]. The essence of this phenomenon is as follows.

At low T the n(T) is controlled by a variable range
hopping (VRH) [4], which gives

o(T) a: exp[ —(Tii/T) ], (1)
with either a =

4 (Mott law [5]), or a = —,
' [Efros-

Shklovskii (ES) law [6]], depending on the shape of a
density of states N(s) near the Fermi level eF. The Mott
law corresponds to N(eF) =const, while the ES law im-
plies the soft Coulomb gap [7]: N(s) ~(e —eF) . Both
laws were observed experimentally in a variety of materi-
als (see [4,8]). In some cases, however, the reentrance of
a usual activation law,

tern (or removing it, or shifting it to another donor, where
the neighboring spins are not polarized) always costs the
energy of spin relaxation. This provides a hard gap to the
electronic density of states and an activational character
to the hopping [1].

The very generality of the above picture makes it some-
what suspicious. Actually it can be as well applied to any
kind of polaron: a usual lattice polaron, or so-called
"electronic polaron" (see [7,13,14]). Indeed all kinds of
polarons give rise to a hard gap in an electronic single-
particle density of states N,„(s). Nevertheless, for the
case of lattice polarons it is well known that for low

T ( T, —tosh (cosh being a characteristic phonon frequen-
cy), the polaron hopping proceeds via tunneling but not
activation, and an activational exponent exp( —W/T) is

replaced by a T-independent one exp( —cW/cosh) in the
expression for a hopping rate I";J [15]. The single-particle
density of states N, ~ is irrelevant for the hopping at low

T, since it is the polaron that hops, not a bare electron.
In addition to the theoretical arguments there are also ex-
perimental observations of a law (1) in the systems,
where the existence of polarons was well established (see
[4]). The same arguments were extended [7,13,14] to the
case of an electronic polaron [16].

It should be noted that the self-consistent many-body
theory of VRH is still lacking. The very concept of long
single-electron (or polaron) hops is subject to criticism
[11]. Apparently, the choice between long single-electron
hops [6,7] and correlated multielectron short hops [171
cannot yet be made. Although the resolution of this con-
troversy is generally very important, it is not essential for
the problem of the magnetic hard gap. So we will basi-
cally ignore all the multielectron eAects.

The case of a magnetic polaron in a regular antifer-
romagnet does not diAer considerably from the case of
a lattice polaron. The characteristic magnon frequency
co,g-T~ plays the role of cosh. Indeed the Mott law
was observed in antiferromagnetic semiconductors (where
the existence of BMP was reliably established [4,18]),
well below the Neel temperature T~.

For all the systems considered above the polaronic
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eA'ect does produce a hard gap in N,~(e), but this gap is

not manifested in the T dependence of o..
Fortunately an activational scenario can be saved when

the magnetic subsystem is disordered. It is known that
disordered magnets are characterized by an extremely
slow relaxation of magnetization, both homogeneous and
inhomogeneous [19]. Semimagnetic semiconductors
demonstrate the spin-glass-like properties even for low
concentrations of magnetic ions (see [20] and references
therein). The direct measurement [21] of a bound pola-
ron formation rate gave rg ' —2&10 K at T—1-2 K.
Note that it is much less than the characteristic interac-
tions in the system. For comparison, the same rate for a
lattice polaron is rg ' —cosh —10 K. The point is that
the magnitude of r R determines the crossover tempera-
ture T, between activation and tunneling. Indeed the ex-
citations with frequencies co& —r R should dominate
in the system. If one considers roughly these excita-
tions as noninteracting ones, then each of them has to
penetrate its own barrier Wq and contributes a factor
exp[ —4W)/co), tanh((uq/4T)] to I;j (see [4]). Then it is

clear that tunneling can dominate only if T & rR . %e
believe that the interaction of excitations, which certainly
should be important in spin glasses, does not change the
above consideration qualitatively.

So for the magnetic polarons in disordered magnets,
contrary to all other kinds of polarons, the dynamic relax-
ation of a polaron is blocked even at low T and hence the
tunneling never wins in competition with activation. It
enables one to treat the hopping in such a system in a
classical way (as in the case of noninteracting spins [22]).

Consider a simple model, consisting of electrons, hop-
ping via donors embedded in a magnetic medium (spins
S„). The Hamiltonian of such a system has a form

H =g [Ho' + (e;+ H;„'i )a ta;]++I j(a taj+ajta;), (3)

where a; are the operators, creating an electron on the
donor i (their spin indices are omitted; see discussion
below); the double occupancy of donors is forbidden.
Ij ~ exp( —Ir; —r, l/() is a "bare" electronic hopping in-

tegral and c; are the random shifts of electron energies.
Since we are interested only in low-T properties, we have
to sum in (3) only over those rare donors which are very
close to the Fermi level. It enables one to divide all the
magnetic medium into the blocks ("submedia") adjacent
to each donor and to neglect the cross interaction of the
submedia. The Hamiltonian of the submedium of donor i

is Ho' in the absence of an electron on that donor, and
H;„'t is an electron-submedium interaction:

Ho Z Jnn Sn, S'n'~ Hini Z hn Sn ~

n, n'
(4)

where J„„are the intramedia exchange constants and
h„' are the local mean fields, accounting for the interac-
tion between S„and the spin of a localized electron cr.

There are two important time scales in the problem:
One is Th p a characteristic lifetime of an electron at a
given donor, and another is r R—a relaxation time for the
spin medium. %e consider only the case rz&&rh, ~, when
the spin medium has enough time to develop a partial
thermodynamic equilibrium for any momentary electron-
ic configuration. The authors of [I] have estimated r R—300 ps, Shop& 600 ps for T—1 K and the inequality
may be improved still further at lower temperatures,
since rh, ~~exp(EH/T) increases at T 0 stronger than
rR (see [19]). Since the dynamics of spin degrees of
freedom is frozen on the time scale of interest, we can
treat the local magnetization M„(but not only a total
one) as conserved. We assume also that the mean fields
h„are small and the media can be characterized by the
linear susceptibility g(T, H). Then the rate of hops I;j

!
~exp( —(;j), where g;j =2r;j/g+s;j/T and

(M(i) h(i)) 2 (M(j))2
~~j=ll~;II+ II

—~)ll+miniX
" " + " + ~)

—~;+g(h("M„"'—h.'j'M„'i'), I!xi!-=xe(x) (5)
1M' 2Z 2g Il

(see [8,22]). The first two terms in (5) are the contributions of filling factors n;(I —nj) and the third term comes from
the optimal hop probability. It consists of two parts: The first part describes the probability of a given fluctuation to
occur, the second one is the probability of a phonon absorption at a given Auctuation (a usual electron-phonon interac-
tion is implied). Since I Ix I I has a kink at x =0, one should explore the three types of minima in (5), corresponding to
the negative, positive, and zero arguments of I!xi!. The first two describe phonon-assisted hops (with emission or ab-
sorption of a phonon, respectively), and the third one corresponds to the "Auctuational hops" [22]. Simple calculations
give

(lej —e;I & Aj+6;, phonon-assisted hops),

w, +a; (c&
—a)'

4 4 Aj+d;
' + '

(lej —e;I & Aj+A;, Auctuational hops),

where the polaronic shift d„(T,H) =g(T, H)g„h(' /2 was introduced. If the quenched Auctuations of 6; can be
neglected [i.e., h„=A)M)(T, H)l, then the problem of a network's dc conductivity can be reduced (see, e.g. , [8]) to a per-
colation problem in 4D space (r; and a;) with a connectivity condition g;J & (,.
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For relatively high T such that the Mott energy strip's
width is larger than a magnetic hard gap, AM, «(T)—T(Ta/T)'»h~i, we arrive at the conventional VRH
law (1). In the opposite case, when &MD«(T) «&~i, one
has s;1 = (&~i+ (ej (+ (e;))/2, which leads to

cr(T) ~ exp[ EH—/T —(Tp/T) '], (6)
where the second term in the exponent is small compared
to first one and To =A, (a) To, k(a) & 1 being a universal
numerical factor. The activation energy E~(T,H)
=Apoi/2 corresponds to the "optimal hops" which occur
together with a fluctuation of magnetization, equalizing
the electronic energy levels on the initia1 and final donors
(see [4,22]). This energy is 4 times less than that for the
hops occurring in the equilibrium magnetization, E&
=25~i. Note that if we held to a straightforward hard-

gap ideology, we would obtain just the latter overestimat-
ed value for EH.

A general formula covering the intermediate region
cannot be derived analytically. While in the limiting
cases the percolation problem can be finally reduced to
the determination of numerical factors, entering Ta and
Tp, in the general case one has to determine numerically
an entire universal function f, of a dimensionless parame-
ter ri=(T/EH)(TO/T)'. In terms of this function the
conductivity can be written as

o(T) ee exp[ —[EH(T)/Tl f(ri)! . (7)

The asymptotics of f, (ri) can be extracted from (1) and
(6): f,(ri) = I+A, '(a)ri if tI«1 and f,(iI) = ri if iI»1.

The effect of magnetic field is trivial: It suppresses g
and hence EH. If 0 is close to saturation, then g 0 and
the eff'ects of the BMP vanish altogether.

We now discuss the realization of the above model in

the case of real Cdp9~Mnpp9Te:In. Magnetic ions Mn +

substitute randomly Cd ions of the CdTe matrix and
form a random network of antiferromagnetically interact-
ing spins. The thresholds for the percolation through the
first nearest, second nearest, and third nearest Mn are x, ]

=0.195, X,2=0.136, and x,3=0.061, respectively (see
[20] and references therein). The corresponding ex-
changes J ~

= 6 K, J2 = 1 K; J3 is so far unknown but can
be estimated as J3-0.3 K. The magnetization measure-
ments [23] show that there is a spin-glass transition (or,
at least, a saturation of the susceptibility) with Ts —0.3
K for x=0.1. Then for the low-T susceptibility per
magnetic ion we can use an estimate g —S(S+1)
xX,ir(x)/3Tg —1 K ', where X,ir(x) is a factor, exclud-
ing spins, participating in strongly coupled clusters
[Xgff(0.09) = 0.2 for the first and second nearest neigh-
bor clusters; see [20]]. A contact interaction of an elec-
tron's spin o with the manganese spins S„ is

H;„=JQpg (S„cr)8(r —r, ),
n

where 00=270 A is a unit cell volume, J=2640 K
[12], r is an electron's coordinate, and r„are positions of
magnetic ions. Within a mean-field approximation one

can reduce the Hamiltonian (8) to the form (4) with
h, ' = 2 JOo~y;(r„)( n;, where y;(r) is a wave function
of an electron bound to a donor i and n; is a unit vector in

a direction of BMP magnetization. Since the rate of elec-
tronic spin flips is higher than rp (see [12]), the coher-
ence of electronic spin is destroyed on the time scale
z h p )) 7& ~ This fact has enabled us to omit the spin in-
dices of the electronic operators in (3).

First consider the case when the concentration of active
donors n is low and the system is far from the insulator-
metal transition (IMT). Then y;(r) =go(r —r;) is a usu-
al hydrogenlike ground-state wave function with the Bohr
radius aq = 60 A( =(), and

gJ Qp 4 xgJ Ap
EH(0) = g I y (r ) I

=
g I yo(») I

d'»
16 ~ 16

3
=30K,xJ o

xag
for T ~ Tg. We have neglected the quenched fluctuations
of h,;, since a number of spins within a Bohr orbit N
—xiraii/Qa —200 and hence the relative variation of 5; is
small (—N 'i ). For N —1 one cannot expect the low-T
activation at all because a considerable fraction of donors
do not exhibit any BMP efl'ect. A large ~h„~,.„=(J/
2)(00/iraqi) =0.5 K —Tz hints that a linear approxima-
tion fails; the nonlinear eAects should suppress EH.

Actually the above results cannot be compared to the
experimental data [1] directly, since the estimates [1]
give g»ag, which implies the closeness of the IMT. To
interpret these data one is tempted to just substitute ( in-
stead of ag, but the situation is more complex. Indeed,
near IMT an electron is not bound to one particular
donor, but rather is spread over a large number of donors:
ti»i;&(r) =g; p;; yo(r —r; ). The label (i) now means some-
thing like the "central donor of a distribution. " Its pre-
cise meaning is, fortunately, not very essential, since a
characteristic hop length —g(Tp/T) »g. The polaronic
shift for the state centered at the donor i is

Ai 2EH(0~A;, A =2
I p I

' & I .
I

A factor A; (an inverse "participation ratio") strongly
suppresses a polaronic eff'ect in the vicinity of the IMT.
The magnitude of ~h„~ decreases also, thus improving the
linearity conditions.

It is known that p;; has a fractal structure near the
IMT of Anderson type [24). The numerical calculations
[25] have shown that A is by no means a self-averaging
variable; the distribution p(A) is very broad on its large-
A side, though it is sharp on the low-A side: p(A) = 0 for
A & A;„(i.e., there is a hard gap in A distribution).
Hence in the very low-T limit, when hM, tt (Eff( )
=Am;&EH(p), the hard gap EH in (2) is just EH(m;„). One
can expect the following scaling laws near the IMT:
K'- (1 n/n, ) "'—

, (—(1 n/n, )—
EH a:Am;„—(1 —n/n, ) "', To ~ I/x'( —(1 —n/n, )"
T, =EH/To- (1 n/n, )'"'—
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where T, is the temperature of crossover from (1) to (2).
According to the numerical calculations [25], the critical
exponent for Am;„ is yo= 1.9. The possibility to extract
yo, v, and vt from the data [I] is very attractive, but un-

fortunately the experimental points are not sufficiently
close to the IMT (n (0.62n, ).

It can also be shown that in a very close vicinity of
IMT there is an interesting regime [intermediate between
(1) and (2)] dominated by the fluctuations of A;. It can
be described by the percolation in 5D space, which leads
to the VRH law (1) with To, slowly increasing upon
lowering T. The details will be given elsewhere.

In general, for any system with wide distribution p(A)
of polaronic shifts (and we believe that this is the case for
the experiment [2]), one can expect the low Tsimp-le ac-
tivation if p(A) has a "hard gap" at low T (which seems
to be likely in the vicinity of the IMT [25]).

In conclusion, we have argued that the hopping of spin
polarons in magnetically disordered media (e.g. , in a sem-
imagnetic semiconductor) proceeds via activation for all
temperatures. It provides an explanation for the phe-
nomenon of the magnetic hard gap, observed in a number
of substances, and resolves a puzzle, i.e., why the magnet-
ic hard gap is manifested in the T dependence of conduc-
tivity, while the other hard gaps (due to other kinds of
polarons) are not. We have found the modification of the
percolation method, accounting for the spin polarons, and
obtained the low-T activation energy for both the strong-
ly localized regime and the close vicinity of the insulator-
metal transition. Our approach, being close to the initial
idea of the magnetic hard gap [1,9], diA'ers from it in one
respect: We do not assume a magnetic medium to be in

equilibrium at the moment of the hop, but rather we
choose an optimal Auctuation of this medium, which pro-
vides a maximal probability to the hop. We have dis-
cussed the concrete realization of the scenario only for
CdMnTe, though we believe that it can be applied to
some other systems with a large number of spins within
the localization radius (e.g. , the silicon close to IMT).

The author is indebted to H. Capellm ann, G. M.
Eliashberg, A. O. Gogolin, and D. E. Khmelnitskii for
discussions and enlightening comments.
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