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We calculate the entropy of a two-dimensional Fermi liquid using a model with a contact interaction
between fermions. We find that there are T contributions to the entropy from interactions separate
from those due to the collective modes. These T contributions arise from nonanalytic corrections to the
real part of the self-energy which may be calculated from the leading-log dependence of the imaginary
part of the self-energy through the Kramers-Kronig relation. We find no evidence of a breakdown in

Fermi liquid theory in 2D and conclude that Ferrmi liquids in 2D are similar to 3D Fermi liquids.
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The unusual nature of the normal state properties of
the high temperature superconductors (HTS) has gen-
erated a new interest in the metallic phase of strongly
correlated electronic materials. In particular, much at-
tention has been focused on the existence [1-3]or nonex-
istence [4-8] of a Fermi liquid phase for these systems in

two dimensions (2D). This controversy as to the ex-
istence of 2D Fermi liquid (FL) is motivated by the

difhculty of fitting some experimental data on the HTS
materials with conventional FL expressions and also by
the property of one-dimensional systems that the ground
state of a system of interacting fermions is a Luttinger
liquid (LL) rather than a FL. In particular, this has led
to the development of the marginal Fermi liquid (MFL)
phenomenology [5,7] which has been used extensively to
fit data [9]. However, there is no microscopic calculation
as yet which leads to a MFL ground state.

The stability of a FL ground state has been studied ex-
tensively in the dilute limit and for weak coupling [3] in

2D. In the dilute limit it is possible to show that the
particle-particle channel diagrams contribute in leading
order. The presence of a two-hole bound state in this
channel led to speculations that this was a possible source
of the breakdown of the Fermi liquid phase [10]. It ap-
pears, though, that this bound state only gives rise to
higher order corrections to the properties of the FL. In
weak coupling away from half filling this stability of the
FL phase of the 2D Hubbard model was also observed in

the propagator renormalized fluctuation exchange ap-
proximation of Serene and Hess [3]. In this approach all
of the known instabilities, superconductivity, spin and
charge density waves, and the two-hole bound state could
occur. No evidence for a breakdown of the FL phase was
observed at quarter filling.

From these studies we see that the FL phase of the
Hubbard model is stable against particle-hole or par-
ticle-particle fluctuations away from half filling. From
the two-hole bound state it was shown [1] that this con-
tributed a term of the order ~e~

l to the imaginary part
of the self-energy, X(p, e), and from Kramers-Kronig a
similar term is found in ReZ(p, e). The two-hole bound

states are predominantly short wavelength fluctuations; in

this Letter we investigate the long wavelength fluctua-
tions. We find that they give rise to lower order nonana-
lytic corrections to FL theory than does the two-hole
bound state. In particular, we find that Re&'Z(p, gp)
cc sgn(gp)gp and that this term gives rise to a T correc-
tion to the specific heat, Ct. So the long wavelength
eAects which are responsible for the leading corrections in

3D also lead to the leading corrections in 2D. Bound
state efIects lead to higher order contributions. The na-
ture of the leading corrections to the specific heat in 2D,
—T, are such that are easily obscured by the contribu-
tion from collective modes but are presumably present in

the results of Ref. [3]. What we learn from our work and
that of Ref. [1] and [2] is that the breakdown of FL
theory must be more subtle than is found in any of the
traditional perturbation theory approaches. The present
calculation cannot address the issue raised by Anderson
[4, 10] as to the validity of perturbation theory in 2D ex-
cept to say that there is no indication of this from pertur-
bation theory itself.

Apart from the question of stability of the Fermi liquid
our results for the corrections to Fermi liquid theory are
most surprising. In 3D the specific heat is known to have
a T lnT correction, i.e. , Ci =yT+I 3DT lnT. In the
1D system the breakdown of the FL can be seen already
in the second order perturbation theory where the specific
heat correction is given by bCt =I tDTlnT. (This is a
clear signal that perturbation theory does not work since
this is more important than the linear term. ) In the 2D
case we find that Cz= yT+I 2DT + . One might
have expected this to have a T lnT correction by study-
ing the 3D and 1D behavior, this in fact is not the case.

In order to determine the leading corrections to a 2D
FL due to long wavelength interactions we consider a sys-
tem of fermions which interact via a two-body potential
as in Eq. (1):

g Ipl',
p, (y 2ftl

+ X I a, tt, y, s(q)cp, acp' pep' —q rcp+q J.
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0031-9007/93/71 (7)/1043 (4)$06.00
1993 The American Physical Society

1043



VOLUME 71, NUMBER 7 P H YSI CA L R EV I EW LETTERS 16 AUGUST 1993

Expanding in the particle-hole channel the eA'ect of the
interaction may be considered as coming from two in-

dependent channels, the symmetric (s) and the antisym-
metric (a) channels corresponding to no spin exchanged
and to spin 1 exchanged. Using the paramagnon model
first introduced by Doniach and Engelsberg [11], for the

q dependence of the interaction, the value of the interac-
tion in the symmetric channel, V„ is —I/2 and in the an-

tisymmetric channel, V„ is 2I, where I & 0 [12]. I is the
strength of the interaction and multiplied by the density
of states of one spin is the paramagnon parameter, I. The
interaction is cut off at ~q) =q, . Our results for the
paramagnon model may be easily generalized to the Lan-
dau theory of FL's by replacing the paramagnon parame-
ter by Landau parameters since we concentrate on long
wavelength eA'ects in a particle-hole expansion. We dis-
cuss this in more detail towards the end of the paper. So
our results are much more general than the paramagnon
model and hold for any interaction for which perturba-
tion theory is valid. By using the paramagnon model we

are able to investigate the long wavelength properties of
FL's without having to worry about details of the
momentum dependence of the potential.

In order to compare the properties of FL's in 2D and
3D we first calculate the single-particle self-energy to
second order in perturbation theory at zero temperature.

ImZ(p, e) =, , sgn(e)
nI

8 VFpF

x([q,vF —~(p~]e'+ —,
' ~e)'+ . ), (2)

where g~ =(p pF)v—F, pF is the Fermi momentum, and

vF =pF/m is the Fermi velocity. The real part of Z(p, E)
is determined from the Kramers-Kronig relation,

( ) 1 p dg
ImZ(pj lg)

z

and is given by

ReZ(p, g~ ) =2 30(p+ B30(p ln ) (p ~
+

(3)

The g~ ln~gz~ term comes from the ~e.
~

term in ImZ(p, e)
and so it is determined by the iong-wavelength scattering.
In fact it has been shown by Moriya [14] that no (~1n~g~ ~

terms come from finite q scattering. For a 2D FL we find

We consider the real and imaginary parts of Z(p, e) sepa-
rately in order to make contact with the known results for
ImZ(p, gz). We calculate ReZ(p, t. ) using ImZ(p, e) via
the Kramers-Kronig relation which necessitates our cal-
culating ImZ(p, e) for all e not just on shell. In order to
discover the functional form of Z(p, e) for a FL it is

sufficient to go to second order in the interaction. For a
3D FL Blaizot and Friman [13] found

4I
ImZ(p, e) =sgn(e)

2 t[g~+2(~(e —(~)]In(max[(~, ] @[])e(q, vF —
]e[)2zN (0)vF

+ (~ —0, ) 'ln(l ~ —4, 1)e(q, vF I
~ —

&, I)+—.

for g~ &0. This reduces to the well-known results of
Hodges, Smith, and Wilkins [15] and Bloom [16] for

ImZ(p, E = (~). Using the Kramers-Kronig relation
again, ReZ(p, (~) is

ReZ(p, gp ) +20(p+ +20 sgn(gp )gp + (6)

amp = [1 —2fp+q](p q)'V"',
I~ &v,

(7)

Only the first term in ImZ(p, e) contributes to ReZ(p,
g~). The linear terms in ReZ(p, g~) for 2D and 3D are
eAective mass enhancements, which come from all q's

and depend on the q dependence of the interaction. Here
we are concerned with the corrections to the eAective
mass enhancement terms. As in the case of B3D, B2D is

determined by long wavelength scattering. Comparing
the corrections to the effective mass terms in ReZ(p, (~)
in 2D and 3D, one sees that in 2D the correction is non-

analytic and comes from the leading e dependence of
ImZ(p, e) whereas in 3D the correction is analytic but
comes from nonanalytic terms in ImZ(p, e). This dif-
ference between the leading corrections to the linear g~
dependence in 2D and 3D is due solely to the diAerent
phase space. This may be seen by calculating the contri-
bution to the spectrum in 2D using the equation

where V is the coefficient of the (p q) term in the
eAective quasiparticle interaction. In 3D this gives the
g~ln~gz) dependence [17]. In contrast to 1D, where the
analogous calculation already shows that FL theory has
broken down, there is no indication of a breakdown of FL
theory in 2D to this order in perturbation theory. We
now consider the thermodynamics of a 2D FL and com-
pare the results with 3D.

Using the RPA approximation the change in the ther-
modynamical potential due to interactions in Eq. (1) is
given by

AQ =koT g ( 2 [In[1 —lg(q, ro„)]+lg(q, ro„)]

+ 2 [In[1 +I@(q,ro„)] Ig(q, co„)]), (—8)

where

P 9 Pfi+~ fi
(~i +~

fz is the Fermi-Dirac distribution function, and ro„=2m
&&(n+ 1)T are Matsubara frequencies. Although a cal-
culation of AQqp to second order in the interactions gives
the functional form of the temperature dependence, by
calculating h, Qqp 1n the RPA approximation we are able
to point to a diAerence between the coefFicients of the
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leading corrections to the specific heat of 2D and 3D FL's which we point out below. When analytically continued to
the real co axis AA can be easily broken up into a quasiparticle contribution, AAqp, and a contribution from collective
modes, AA«||mod„. First we consider AA~p which is given by [12]

n oo

Anqp= na(co)[F(q, co)+I@"(q,co)1,
Iq &q, "' (10)

F(q, co) = —tan
3
2

—IX"(q, ~) + 1+—tan
1 Ig'(q—, co) 2

Ig"(q, co)
1 +Ig'(q, co)

g(q, co) -g'(q, co) + ig"(q, co),

and na(co) is the Bose distribution function. From this the change in the entropy is

(i 2)

BAQqp dco Bno (co) BF(q co) B[no (co)g"(q, co)]
F(q, co)+ no(co) ' +I

T „ iq (q, "o z T BT BT
(i 3)

AS„=y,',T+r„T'+O(T'), (14)

(w, +w. )

The two terms on the right of Eq. (13) involve the tem-

perature dependence of g(q, co) which is weak when p is

kept constant.
Calculating ASqp for 2D one finds

! One sees that only odd n terms contribute to AS and that
they lead to series of odd powers of T. The presence of
the T in ASqp clearly arises from the nonanalytic nature
of the correction to the spectrum in Eq. (6). The terms
of O(T ) and higher are a sum of odd powers of temper-
ature.

Carrying out the calculations in 3D one finds that

nn ]

r,D=, pe Ai+, duff. (u)

(is)
ASqp = y3DT+I 3DT'ln T+ O(T') . (21)

where

[A~u —tan '
[Wi u/(1 —u ') ]j

fA(B) =
0

where k =s or a, v, =1, v, =3, and

(i6)

Another difference between 2D and 3D is that I 20 de-

pends on the scattering amplitudes to all orders whereas

r3n involves only the second and third powers of the
scat tering amplitudes.

The collective mode contribution in 2D is

AS«limod, =1 "T +O(T ), (22)

A, and A, are the scattering amplitudes in the symmetric
(density) and antisymmetric (spin) channels, n is the

density of particles, and Tp=UFpF/2. The T term in

AS„p comes from the nonanalytic term in ReZ(p, gp) as

may be seen from the following argument [18]. Consider
the entropy of a FL whose spectrum is given by

1 1r"=
275' c

and c is the velocity of the collective mode given by

1+I
[iF

Jl +2I

(23)

(24)

g Cp A&p Bf(e)
p T T BE

(i9)

Assuming that Ae~ can be expanded in a power series
in gp one finds

AS =)V(0)ko Jr 2 2 g a„g". (20)
T 4cosh (g/2T) n

~p =~p+A~p

where Aez arises from interactions. Substituting this

spectrum into the expression for the entropy of a nonin-

teracting Fermi liquid and expanding to linear order in

Amp one finds

The collective mode spectrum does not contain any log
dependence on !q! and so there is no lnT contribution to
AS pff pd . In 3D AS«ii pd, —T and does not contribute
to the T lnT corrections except to change the cutoff of
the logarithmic temperature dependence.

Collecting ASq„and AS«imam~, together one sees that
AS is a power series in temperature in 2D. In particular,
there are no lnT terms in AS which implies that, at least
to leading order, quasiparticle damping effects do not
contribute to thermodynamic properties in this approxi-
mation where the propagators are unrenormalized. The
effect of finite quasiparticle lifetimes on the entropy may
be estimated with Eq. (23) of Ref. [19] and is given by
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WSd, p=gq de G(X(p, e)),8&(e)

P

where

G(g(p, e)) = ', —tan '[) (p, e)]) (p, e)
I+X(p, e) '

and

(25) tributions to the quasiparticle spectrum.
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( ) ImZ(p, e) (27)
ReZ(p, e)

The functional form of the integrand in Eq. (25) is very
complicated and analytic evaluation is intractable. So we
content ourselves with an estimate. G(k(p, e)) is a
smooth function of k(p, e) which goes as X(p, e) for
small k(p, e) and is a constant for large k(p, e). In order
to get an estimate of ASd, ~z we assume that G-k(p, e)
for all values of e. Since there is no contribution to the
integral for large values of ~k(p, e) ~, this is clearly an
overestimate. With these approximations one finds

hSd, ~p- T /n T which is higher order in temperature
than the T corrections found above. Lifetime effects
lead to higher order effects in the thermodynamics than
T so that they are much less important in thermo-
dynamics than a calculation of Z(p, e) would suggest.

Since we have used a particle-hole expansion in the
symmetric and antisymmetric channels, our results may
be easily extended to Landau's Fermi liquid theory by
considering Eq. (I ) to describe quasiparticles with an

effective mass interacting via an effective interaction

f(p, p') which can be decomposed into two channels,

f, (p, p') and f, (p, p'). This eA'ective interaction is a long
wavelength limit of the particle-hole irreducible four-
point vertex and so describes long wavelength properties.
This leads to somewhat more complicated expressions
when V, and V, are substituted for by f, (p, p') and

f, (p, p'). The Landau functions are functions of the vari-
able s =co/qvF and may be expressed as coeScients in a
series of Legendre polynomials in which s is the argu-
ment. These coefFicients are the Landau parameters.

The present calculation indicates that a 2D FL is very
similar to the 3D case and that any breakdown of the FL
in 2D has to arise from effects which are more subtle
than those which give the leading corrections to FL
theory in 3D. The logarithmic dependence in ImZ(p, E)
allows us to keep track of the contribution to the thermo-
dynamic properties from lifetime eA'ects. We find that in

spite of the (~ In(z dependence of the relaxation time in

2D their contributions are higher order in T than the con-
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