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An exact renormalization group describes extremely slow, logarithmic diA'usion in the presence of a
biasing field on ramified fractal structures. Recursion equations are singular at the fixed point and the
standard analysis to extract asymptotic behaviors has to be reconsidered. The model reproduces mecha-
nisms working for biased diAusion on percolation clusters. For 1

—d structures, logarithmic diAusions
generalizing that discussed by Sinai [Theory Probab. Its Appl. 27, 256 (1982)] are obtained by the same
methods.

PACS numbers: 64.60.Ak, 71.55.Jv

Slow diftusion, with the average displacement R, grow-
ing in time t, as some power of lnt, has been exactly
demonstrated by Sinai for a particle hopping on a one-
dimensional chain and subject at each site to an indepen-
dent random bias [1]. There is numerical evidence that
logarithmic diAusion could replace the anomalous power
law one, in fractal structures, like the infinite incipient
cluster (IIC) of percolation, when the diffusing particle is
subject to the action of an external biasing field [2,3]. In
this case the field is not random, but the structure of the
fractal conspires with it and determines a localization
eAect, e.g. , by pushing the particle towards dangling ends
[4].

Interestingly enough, the current understanding of
such phenomena relies almost entirely on the picture of a
particle diA'using in one dimension. This is the situation
of the Sinai model, whose behavior is indeed easily under-
stood once realized that, over a distance R along the
chain, a potential barrier cc JR develops by adding the
local random biases with zero average. On the basis of
Arrhenius law, overcoming such a barrier requires a time
cx:e, from which R ~ (Inr) follows. Another mecha-
nism of slow diffusion under bias is that arising in a
comblike structure with teeth of variable length, along
which a bias field pushes the particle towards the tips. A
suitable power law distribution of teeth lengths is then
easily shown to imply waiting times, which make dif-
fusion along the comb basis logarithmic [5]. In this case
again the model is basically one dimensional, and still
very far from the complexity of fully self-similar struc-
tures, like the IIC of percolation. For example, the linear
character of the teeth is essential in order to derive the
waiting times associated with them.

While it is intuitive to ascribe the bias induced loga-
rithmic diAusion in a fractal to mechanisms of trapping
into dangling ends, so far, a proper mathematical descrip-
tion of such phenomena within a fully self-similar ge-
ometry has never been accomplished. In the present
Letter we address this issue on deterministic fractal mod-
els by a suitable dynamical renormalization group (RG)
approach.
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FIG. 1. (a) T fractal at the third generation. The next gen-
eration is obtained by performing the operation illustrated in

(b) on each bond. The arrows on each bond indicate the direc-
tion of the topological bias.

While the RG is the most natural method to treat dy-
namics on self-similar structures [6], one should realize
that logarithmic long time behavior must somehow imply
a peculiar, singular structure for an RG transformation.
Indeed, standard dynamical RG yields the time rescaling
factor, l' ", under length rescaling 1 [7]. This is con-
sistent with power law diA'usion R —t . Logarithmic
diA'usion clearly corresponds to the limit v 0, which
implies l' ' ~, and thus a singularity for the RG trans-
formation. A singular RG transformation is very unusual
and makes of course practical sense only if the RG can be
carried out exactly, as in the example discussed below.
The possible occurrence of singularities in RG transfor-
mations has been investigated some time ago [8,91. How-

ever, contrary to the attitude of the present work, such
singularities, or peculiarities, were seen as obstacles for
the RG strategy, and a major concern was to show that
they were not located at the fixed point, as, on the con-
trary, will be the case here [10]. Thus, the RG technique
developed below should be of general methodological in-

terest in its own right.
The lattice we consider [Fig. 1(a)l as an example is the

so-called T fractal, whose fractal dimension is d =In3/In2
[11]. A diffusing particle hops between nearest neighbor
(nn) sites of the structure. The master equation for the
probability, P; (t), for the particle to be at site i at time t,
is

P;(t+r) =P;(r)+g [W; P (t) —W;P;(r)],
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W'=W (4a)

ao~+
aoto [(a iso+ W) (a3co+ 2+ W') —W]

aim+ W

—3W —3, (4b)

aico'=(airo+ W)(a3ro+2+ W) —2W —W (4c)

o.3'+ 2+ W
Q3CO = [(a iso+ W)(a3ai+2+ W) —W]

aiop+ W

FIG. 2. Example of T fractal with coordination equal to l or
4 in d =2. Similar structures can be drawn in d & 2.

—2 —3W —W

a~co+ WP.'r = P;.(airo+ W) (a3c0+ 2+ W) —W

(4d)

(4e)

where the sums are over nn, j, of site i, and W~. repre-
sents the probability that the particle hops from j to i in

time z. It is further assumed that WJ =W+ or W —,ac-
cording to whether one goes from j to i following the
bond arrow or not. Since the arrows are all pointing in
the direction of increasing "chemical" distance from the
origin (i.e., the T-fractal central site j=0), the following
relations have to be satisfied: 2W++W —~ 1 and 3W+
~ 1. We will further assume W=W-/W+ ~ 1, so that
the bias tends to push the particle to higher chemical dis-
tance from the origin. This could represent diA'usion in
the presence of a pressure force, due, e.g. , to continuous
injection of a fluid at the origin. Putting z =1, and intro-
ducing discrete Laplace transforms [6],

The nonlinear dependence on co of the new frequency co',

as implied by Eqs. (4b)-(4d), is a standard memory
eff'ect associated with dynamical coarse graining. Thus in

a complete RG treatment one has to consider recursions
for functions a;(r0), and Eqs. (4b)-(4d) are put in the
form

a'(Am) =f(a(ro), W),
where a;(co) and a (Aro) replace a;co and a co' on the
right- and left-hand sides of Eqs. (4b) and (4c), respec-
tively. In Eq. (5) A has to be chosen such to guarantee
that a " (ro) approaches a finite, not identically zero fixed
point, a*(co), under iteration. In standard treatments
this can be implemented by choosing A to be the max-
imum eigenvalue of the m linearized recursions,

a'=T(W) ~iv idea, (6)
P; (coo) = g P;(n)(I +coo)

n 0

Eq. (1) implies

(2)
near co =0, where

BI;(a,W)
1J 8ai

a(i)~++ P;(co) =g ' P, (co)+8; o, (3),-; W+

where co=ron/W+, Pl, (coo) =PI, (co)/W+, and the Kro-
necker's delta reflects the initial condition, P;(0) =6;0.
According to Eq. (1) one should have a(i) =1, Vi, in Eq.
(3). We introduce such coefficients because our RG
transformation distinguishes between sites with diA'erent
coordination. It will turn out that a(i) =a~, a3, or ao, ac-
cording to whether i has coordination 1,3, or coincides
with the origin, respectively. The only parameters enter-
ing Eq. (3) will thus be (ao, ai, aq) —=a, and W.

The RG transformation is based upon eliminating from
Eq. (3) the P's corresponding to sites introduced at the
last generation of the T fractal. This corresponds to per-
forming the inverse of the operation illustrated in Fig.
1(b) on each elementary T unit of the structure. The
sites of the old structure which are not decimated have
distances reduced by a factor I =2, if measured in terms
of the new lattice spacing. The decimation of Eq. (3) en-
ables us to put it into the original form by the following
identifications:

and W* is the fixed point value of W. This is, e.g., the
case when we consider W* =1, according to Eq. (4a). In
such a case A =2' '=6 and the average distance traveled
after a time t behaves asymptotically as t ', with v
=ln2/ln6 [6]. At the fixed point W =0, controlling
biased diffusion, however, the matrix in Eq. (6) is singu-
lar. For W 0, the diverging components of a are mul-
tiplied by factors 2/W. This, together with the rescaling
relation (4a), suggests to look for a fixed point a*(co) of
Eq. (5) by putting A =A(W) =2/W'i . If this fixed point
is attractive in the domain 8' & 1, the co rescaling

W 0
1/A(W) —2'i" ~ implies v=0, as anticipated in the

introduction [12]. To extract the correct long time be-
havior of the average diAusion distance we use here a
simplified procedure in which the m 0 limit is carried
out in advance in Eqs. (4b)-(4e), by keeping everywhere
only terms to leading order in m. As anticipated, the
most interesting fixed point of Eq. (4a) is W* =0, which
controls all biased (W & W~) situations. To discuss
long time (co 0) scaling, the most suitable quantity
turns out to be
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R(aru, W') =g a(j )coPJ (ru)rz
J

where rj is the scalar distance of j from the origin. The
reason for this choice is the fact that from Eq. (3) it fol-
lows that p~ a (j )coPJ = 1 and that, under recursions
(4a)-(4e), this normalization is preserved [13]. In view
of this basic property, it is not difficult to prove that, un-
der renormalization, R 2 'R, since 2 is our rescaling
factor. The co 0 scaling behavior of R can be extracted
by envisaging an iterated application of the RG transfor-
mation

(7)

R(aalu, W)=2"R(a "ru W ) (8)
with a " =Q" oT(W )a. The P's entering in R on
the right-hand side of Eq. (8) are given by a similar itera-
tion of Eq. (4e) n times. For increasing n the leading
contributions to a" can be estimated as (ao2"/W
ai2",a32"/W ), the a s being suitable constants which
depend on initial conditions. The denominators of ao"
and a3" imply a strongly singular character of the RG
mapping. Indeed, at the W*=0 fixed point, the com-
ponents would result infinite even for finite n. The singu-
larity does arise from 2/W=A (W)/2, the factor multi-
plying the diverging components of a " .

Now suppose we let co 0 with ro2"/W kept con-
stant, and equal to some m. The behavior of R can be
finally extracted from Eq. (8) if we have control on
R(aoni, —O, a3&, —0). This can be done by inspecting
the acceptable solutions of the system (3) in these limit
conditions. A careful analysis of these solutions shows
that R approaches a finite, nonzero limit and thus does
not produce further singularities. On the basis of this,
going back to Eq. (8) and taking into account that, to
leading order, 2"—lnr0/ln W, for ro~ 0, n +~, at
fixed m, we get finally

0 inn)R(a, ru)— (9)
lnW

Assuming a; =—1, Vi, because of Eq. (7) the Laplace
transform of the average diffusion distance behaves as

(R( )) 1 lnco

ln W co
(10)

which implies
+"

inr
(R(r)& (11)

lnW

Thus, as anticipated, the singular character of the RG
mapping gives rise to logarithmic diffusion. An extra re-
sult in Eq. (11) is the logarithmic dependence on W.
Since W=I represents the unbiased situation [for which,
taking into account that A(1) =6, our methods easily give

g~ +oo
R(t) — t '" i'" 1, the amplitude in Eq. (11) has to
diverge for W 1, consistent with the expected cross-
over. In the literature on biased diffusion, logarithmic
amplitude dependences on the bias strength [14], like that
in Eq. (11), have only been conjectured on the basis of
numerical evidence or heuristic arguments [3]. It is re-

markable, in our opinion, that our RG treatment natural-
ly yields the amplitude result in addition to logarithmic
diffusion.

As mentioned above, a simplifying assumption we
made was the possibility of treating the mapping to lead-
ing co order [Eqs. (4)] when discussing the limit of Eq.
(8). To corroborate our confidence in the validity of Eq.
(11) we chose to try our RG strategy on a problem for
which logarithmic diffusion is naturally expected, with an
exponent which, like in the case of Sinai's model, can be
easily guessed by a potential barrier argument. We
indeed consider a deterministic generalization of Sinai s
model [15]. This is a d= 1 structure made of unbiased
(line with open circle), right biased (line with rightward-
pointing arrow), and left biased (line with leftward-
pointing arrow) bonds in one dimension. The structure is
built up by iteration according to the inflation rules illus-
trated in Fig. 3(a), starting, e.g. , with a left biased bond
at stage zero. Hopping across a biased bond is favored
(unfavored) when taking place in the same (opposite)
direction of the bias, while unbiased bonds are crossed
with equal probability in both directions. In this situa-
tion, since the net potential barrier accumulating for a
length R is R '" i'" (see Fig. 3), we expect
t —exp(R'" '" ), i.e., R —(lnt)'" i'" . We verified the va-
lidity of this result on the basis of the same RG method
applied to the T fractal. Details on this calculation,
which is quite complicated and involves five a parameters,
will be reported elsewhere. Here it suffices to report that
in this example the expected logarithmic behavior of R is
indeed extracted by an exact RG transformation with
singular structure, of the same kind as that discussed
above. A logarithmic bias field dependence of the ampli-
tude is found also in this case.

All this gives further strong confidence that the results
of our RG approach to the T fractal are correct. Thus,
the T fractal offers a solid example of a new type of loga-
rithmic diffusion, which cannot be reduced to the usual
one-dimensional barrier mechanism. In our model loga-
rithmic diffusion results from the existence of ramifi-
cations at all length scales. Without these ramifications a
bias would typically produce a full localization, i.e.,j~ + oo'

(R(t)) — const. This is, e.g. , the case when biased
diffusion on a half straight line is considered, a process
which can also be exactly described by our RG method.

(a)

(b)

FIG. 3. (a) Inflation rules for the construction of the one-
dimensional array of biased bonds. Notice the introduction of
unbiased bonds. (b) Inflation growth scheme.
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There are good reasons to believe that in the situations
realized by numerical experiments, e.g. , on biased dif-
fusion on percolation clusters [2,3], the mechanisms lead-
ing to logarithmic time dependence of R should be quali-
tatively similar to those described in the T fractal. The
cluster indeed is a fractal structure, essentially made up
of dangling ends, which, under the action of an external
field, should behave similarly to the branches of our mod-
el with respect to the hopping particle.

Results similar to those described for the T fractal
above can also be obtained for models within the same
family [11]. For example, for the structure in Fig. 2 we
obtain again the results (9)-(11) since, under RG, the
ratio between rescalings in Euclidean and chemical dis-
tances is 1 also in this case.

An advantage of our RG method, even with respect to
other exact approaches, is that it also gives control of the
bias dependence of the amplitudes.

- Apart from this, it seems worth pointing out that, from
a methodological viewpoint, to extract logarithmic, rather
than power law dependence, from an RG strategy, im-
plies the use of a singular transformation, a feature which
openly contradicts the usual postulates made in the ap-
proach. Here we showed that giving up the analyticity of
the transformation can lead to the possibility of describ-
ing phenomena like logarithmic diAusion on a fractal.
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Padova.
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