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Radiation-Induced Defects in Glasses: Origin of Power-Law Dependence of Concentration on Dose
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We propose, and verify in the case of a Ge-doped-silica-core optical fiber, a general explanation for
the power-law dependencies on dose frequently observed for the concentrations of radiation-induced de-
fect centers in insulating glasses. This insight permits detailed prediction of the postirradiation recovery
curves, given just the empirical exponent of the power law, 0 (f(1, and the experimental irradiation
time, t;„,d The . time constant of the recovery is given by t;„„d/(1 f), ind—ependent of the order of the ki-
netics. We establish a microscopic model (radiolytic oxygen molecules) for the y-ray-induced absorption
at 1.3 pm in our test fibers and infer a diAusion-limited bimolecular recombination process.

PACS numbers: 61.72.Cc, 42.70.Ce, 61.43.Fx, 82.50.Gw

q =CDf, (2)

where D is the radiation dose and C and f (& 1) are
empirical constants. Many of the published power-law
growth curves have been recorded for the induced at-
tenuations in optical fibers [9,10]. In each of these cases,
the postirradiation thermal decay of the attenuation has
exhibited "stretched" behaviors which we have previously
opted to fIt to standard nth order kinetic formulations—rather than Eq. (I)—i.e., solutions of

dq/dt = —Rq", (3)

where R is a constant. Our prior fits [9,10] implied ef-
fective values of n ranging from 3 to 10, despite our belief
that the underlying kinetics must be bimolecular (as for
recombination of electrons and holes or vacancies and in-
terstitials).

Analyzed data on thousands of condensed matter sam-
ples and tens of' relaxation phenomena have appeared to
be described by a single "universal" relation [1-3],

q (t ) =qo exp [—(t/z ) '],
where q(t) is the measured quantity, z is the observed
time constant, and a is a number between 0 and 1. Over
the years, there has been intense interest in developing
evidence for the microscopic physics underlying the data
described by this otherwise phenomenological equation.
Nominally, two classes of mechanisms are considered:
(i) diffusion-controlled reactions in which the "stretched
exponential" behavior is attributed to random distribu-
tions in the parameters governing transport in disordered
solids and (ii) hierarchically limited dynamics resulting
in correlated relaxation processes consisting of several
successive steps [4]. Among the relaxation phenomena
recently interpreted in terms of Eq. (I) are the long-term
kinetics of postirradiation thermal bleaching of radi-
ation-induced defects in glasses [51.

A separate phenomenon has often been reported in the
literature [6-11], usually, though not always [11],
without any attempt at interpretation. This phenomenon
is defect growth kinetics taking the form

In the present paper we now prove that the oft-
observed power-law growth and "stretched" (n & 2) de-

cay behaviors of Eqs. (2) and (3), respectively, are simul-

taneously interpretable in terms of standard bimolecular
kinetics (n=2) if we decompose the observed kinetic
curves into the contributions of a distribution of indepen-
dent defect subpopulations, each characterized by a
difTerent production rate constant K and a recombination
rate constant R related to K by a semiempirical formula.
We use our model to analyze new experimental data for
the Co-y-ray-induced attenuation measured at 1.3 pm
in an optical fiber [12] with a Ge-doped-silica core and a
pure silica cladding.

We begin our analysis by difi'erentiating Eq. (2) to ob-
tain an empirical growth rate equation

dq/dt =CfDI 'D, (4)

where D is the dose rate. In classical nth order kinetics, a
rate equation of the following form always applies:

dq/dt =KD —Rq". (5)

We now equate the right-hand sides of Eqs. (4) and (5)
to obtain

R=q "(K' CfDf ')D. —

Equation (6) shows that for a power-law growth curve,
the efrective "constants" R and K must be empirically in-

terrelated and depend on D, D, q, and n. In our model,
we posit that the underlying classical rate constants are
time invariant. This ansatz leaves us with no choice but
to treat the empirical growth curve as the envelope of a
series of discrete classical curves (or integration over a
continuum of curves) given by the solutions of Eq. (5) for
a range of dose independent values of K; and interrelated
values of R;. It is useful for heuristic purposes to attach
a value of K; to each point on the empirical growth curve
according to the equations qt;) =K;Dt;) =CDf(;) (an ap-
proximation which assumes that the ith component curve
saturates abruptly when it reaches the empirical curve at
coordinates Dt;), q&;)). In this way, we can eliminate ei-
ther D&;& and qt;& or K; and q&;) from Eq. (6). For
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power-law growth curve according to our model premise.
We will demonstrate below that such a scheme (presum-

ably based on n =2 solutions) [14] can uniquely account
for our data.

Returning to Eq. (8), we see that our model makes

a no-adjustable-parameters prediction of the recovery
curves to be expected when the radiation is interrupted.
The only knowledge required consists of the empirical
growth parameters C and f, the dose rate D, and the final

accumulated dose D(;~ =D,„.To test this prediction in

the case of the present experiment, we use the standard
nth order kinetic solution for n & 1:
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FIG. 1. An experimental power-law growth curve, Loss
=CD, is modeled as the envelope of an ensemble of saturat-
ing exponentials characterized by correlated production- and
recombination-rate constants K; and R;, respectively. In this
first-order-kinetic analysis, the steady-state (saturation) losses
are given by K;D/R;, where D is the dose rate.

present purposes, we now assume the expected kinetic or-
der (n =2) in performing both of these eliminations, il-

luming first the dependence of R; on K;,

R, =K +f)t f C tf ~ (1 f)D—
and second the dependence on dose [13] of the instan-
taneously measurable R;,

R; =C 'D(;) f+' (1 —f)D.
We have also derived the corresponding relations for
first-order kinetics and, since the n =1 solutions of Eq.
(5) are well known, we have used these relations in Fig. 1

to perform a coarse decomposition of an empirical

q(t) =qo[1+ (n —1)qo 'Rt] 't ' (9)

taking qo=C(D, „I)f and R =R; as given by Eq. (8)
when D~;~ =Deum.

For a variety of dose rates (experimentally resulting in

different values of both C and f) and several diA'erent cu-

mulative doses, the "simple" recovery curves calculated
via Eq. (9) using n =2 gave the experimentally correct
half life, though they did not reproduce the "stretched"
experimental curves, which were better fit by using

n = 5-6. However, the present model envisions the

empirical growth curve to consist of a summation of indi-

vidual curves, as illustrated in Fig. 1. Thus, to be con-

sistent, a detailed model prediction of the recovery curve

must comprise a summation of decay curves, e.g. , with

values of qo(;) which can be picked graphically from Fig.
1 as the values of the ith component curve evaluated at
D =D,„~. [Of course, the decay rate constants R; to be
used are those calculated from Eq. (7) and not the n =1
rates of Fig. 1.] The results achieved in this way are il-

lustrated in Figs. 2(b) and 3(b), where the symbols are
data and the curves are predictions (not fits) [15]. The
astonishing predictive ability of the theory at once proves
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FIG. 2. y-ray-induced losses at 1.3 pm in Ge-doped-silica-core fibers (a) as functions of dose for various dose rates and (b) as
functions of time following removal from the source. Symbols and noisy curves are data. Straight lines in (a) are power-law behav-
iors drawn for comparison purposes. Smooth curves in (b) are theoretical predictions (see text). T= —55'C for data at the higher
dose rates; T= —20 C for the lowest.
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FIG. 3. y-ray-induced losses at 1.3 pm in Ge-doped-silica-core fibers (a) as functions of dose at various temperatures for a fixed
dose rate D =28 rad/s and (b) as functions of time following removal from the source. Symbols are data. Straight lines in (a) are
power-law behaviors (from top to bottom, f=0 64, 0.66,. 0.63, 0.78) drawn for comparison purposes. Smooth curves in (b) are
theoretical predictions (see text). Separate fiber samples were used to obtain decay curves following cumulative doses of 5 and 100
krads.

the correctness of the model, while promising to be of
considerable practical value for extrapolating the perfor
mances of optical fibers in varied radiation environments
from a limited data set.

With the phenomenological model thus established, it
is desirable to seek a deeper physical understanding of the
set (or continuum) of defect subpopulations characterized
by the rate-constant pairs (K;,R;). The temperature
dependence data of Fig. 3(a) show that the R;, at least,
must be thermally activated. It is our sense that the K;
cannot have a temperature dependence, since the energy
spectrum of the inducing y rays, peaking near 1.5 MeV,
must surely dominate. Therefore, to develop Arrhenius
plots from the data of Fig. 3(a), we used Eq. (8) to calcu-
late R;(T) for each of several K; values defined by the
passing parallel lines K;D through the four experimental
data sets. (It would be incorrect to use any group of four
temperature points at some fixed dose, since each of these
would belong to a diAerent K; value. ) The plots so ob-
tained, corresponding to K; values of 0.0003, 0.001,
0.005, and 0.02 dB/km/rad, yielded activation energies of
1.14, 1.35, 1.15, and ls01 eV, respectively. These values
are in excellent agreement with the activation energy of
1.17 eV [16] for diA'usion of 02 molecules in silica glass
and are much higher than the activation energies of any
other known atomic, molecular, or electronic species in

silica. Since it is known (1) that Ge02 is more easily re-
duced to the monoxide than is SiO2, (2) that 02 mole-
cules can be produced radiolytically even in pure a-Si02
[17], and (3) that 02 has a so-called "atmospheric ab-
sorption band" at 1.27 pm [18], we regard 02 molecules
as the radiation product most likely responsible for the
measured attenuations at 1.3 pm as well as the mobile
species determining the recombination kinetics. We

speculate that the existence of a range of subpopulations
is a manifestation of spatially correlated 02/oxygen-
divacancy pairs in a range of initial separations, with the
closest pairs being produced (and recombining) at the
greatest rates. We assume without proof that the
intermediate-range order of the glass network enters in

determining the precise dependence of R; on K;, Eq. (7).
In this interpretation, there must exist nearest-neighbor
pairs which would define upper bounds on the distribu-
tions of K; and R;. This notion is supported by the data
of Fig. 2(a), where the dashed straight line —representing
an initially observed linear response at the highest dose
rate —can be interpreted as K,,„=0.07 dB/km/rad.

We note in passing that other explanations for specific
power-law growth behaviors have been posited. For ex-
ample, it has been pointed out [11] that a D't behavior
can result from a quasi-mass-action law if a primary de-
fect produced linearly with dose were to reversibly disso-
ciate into two daughter defects which become the mea-
sured quantities. However, this special case would re-
quire that the decay time of the primary defect (and
hence the daughter defects in equilibrium with it) be long
with respect to the longest irradiation times over which
the power-law behavior can be observed. By contrast, our
model predicts —and the present data show —decay times
comparable to the irradiation times, t;„„.d, over the entire
range of power-law behavior.

We have supposed that the exponent a in Eq. (1) may
be related to the exponent f in Eq. (2). On the basis of
our analysis, the relation a =1 f (as opposed to a =f) i—s
at least qualitatively correct for postirradiation times
t & t;„„,d and 1 &f& 0.. In Fig. 4, we compare data from

Fig. 2(b) with no-adjustable-parameter curves (dashed
lines) generated from Eq. (1) using this assumption and
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FIG. 4. Data (symbols) from Fig. 2(b) are compared with
predictions based on Eq. (I ) (dashed curves) and Eq. (10)
(bold curves) using a =I f and I/r —=(I f)/t;«, d, w—here f is
taken from Fig. 2(a) [19].

q(t) =qo[1+ (t/r )'] (10)

again assuming a = I f and ta—king I/r =—qoR = (1
—f)DD '=(I f)/t;„,d fr—om Eqs. (2), (8), and (9).
Although better agreement with the data could be
achieved by freely varying all parameters in any one of
Eqs. (1), (9), or (10), no added physical intuition would
accrue. By contrast, the present parametrization of Eq.
(10) is understandable in terms of the above analysis and
oA'ers a practical approximation for predicting the bi-
molecular decay kinetics of defect populations exhibiting
well-formed [19] power-law growth curves.
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