
VOLUME 71, NUMBER 1 P H YS I CA L R EV I E% L ETTERS 5 JUL+ 1993

Colored Activity in Self-Organized Critical Interface Dynamics
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We study roughening interfaces that become self-organized critical by a rule similar to that of
invasion percolation. We demonstrate that there is a fundamental difference between transient and
critical dynamical exponents. The exponents break the Galilean invariance and temporal multi-
scaling is observed. We show that the activity along the interface exhibits nontrivial power law
correlations in both space and time even though only quenched Gaussian noise is applied. The
results are compared with simulations where spatial power law correlated noise is used as input.

PACS numbers: 68.35.Fx, 05.70.Ln, 47.55.Mh, 68.45.Gd

Dynamically roughening interfaces have been studied
quite intensively in recent years using stochastic [such as
Kardar-Parisi-Zhang (KPZ)] [1] and deterministic (such
as Kuramoto-Sivashinsky) [2] differential equations as
well as by various deposition models [3,4]. In addition,
many experiments on roughening interfaces have been
performed on porous media, burning paper, fluid pene-
tration in paper, etc. ; see Refs. [5—12]. It was observed
that the roughening exponents found in the experiments
often were quite distinct from the theoretically predicted
exponents. Some authors [13,14] explained this discrep-
ancy by models where a power law behavior in the ad-
ditive or quenched noise of the system was introduced
from outside. Subsequently, a power law distribution of
the effective additive noise was measured experimentally
in Ref. [15].

Recently, however, Sneppen [16] introduced a simple
growth model where the motion of the interface is deter-
mined by a rule similar to that of invasion percolation
[17]. Reference [18] also mentions an interface model of
this type. The static roughening exponent was found to
be y = 0.63 + 0.02, in reasonable agreement with ex-
perimental results. In this Letter we study the values
of the saturated exponents and the spatial-temporal cor-
relations of the activity generated by the dynamics at
saturation. We observe power law scaling of this activity
and believe it represents the first example of an inter-
face model which generates nontrivial power law activity
(effective noise) without any power law as "input. "

The model is defined on a lattice where each lattice
point (x, h) is assigned a quenched uncorrelated Gaussian
random number ri(x, h). In the one-dimensional version
a discrete interface h(x) is defined on a discrete chain
2: = 1, 2, 3. . . L. We use periodic boundary conditions.
The chain is updated by finding the site with the smallest
random number g(x, h(x)) among all sites on the inter-
face. On this site one unit is added to h. Then neigh-
boring sites are adjusted upwards (h ~ h+ 1) precisely
until all slopes ~h(x) —h(x —1) [

& 1. The dynamics mim-
ics the motion of, say, the interface of oil penetrating a
porous medium. Here progress is often observed to occur
in local avalanches.

A main result of Ref. [16] was a numerical calculation
of the scaling of the interface width with time t and sys-
tem size I. Thus, as also shown in Fig. 1(a), the width
m = ((h —(h)) ) / of a saturated interface scales with
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FIG. 1. (a) Width vs system size L. The full line shows

results from the model, and the dotted line the behavior of
the LFI with f=1.25. As described in the text, the LFI is
a random activation interface model with power law jumps.
(b) Scaling of height-height correlations with time (for system
size L = 16384): The dashed-full line shows the transient
development of the interface. The full line shows the behavior
at saturation. The big black circles reveal the oo moment H(t)
of the height-height correlations whereas the open circles show
the zeroth moment, counting the fraction of activated sites.
The dotted lines display the corresponding scalings for the
LFI at saturation.
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system size Lx with g = 0.63 + 0.02. As noted in [16]
this scaling may be understood from a self-organization
of the interface towards a "critical" attractor which con-
sists of an ensemble of directed percolating strings (of
high values of rl) at their critical point. In Ref. [19] it is
demonstrated that the distribution of g along a saturated
interface indeed agrees with this. For interface dynam-
ics near a critical point, see also [12,20]. It is interesting
to note that the temporal drift of the interface towards

a critical state in this model can be viewed as a simple
example of self-organized criticality [21] which here takes
place also in 1D [22].

In Ref. [16] it was furthermore demonstrated that
the transient roughening is fast, exhibiting nearly lin-

ear growth with time; see Fig. 1(b). As the transient is
the motion towards, but not at, the critical attractor, one
may, however, expect that the dynamical exponent in the
saturated state is difFerent. Measuring the height-height
time correlations by

W(L, t) = ([h(x, t+ ~) —h(z, ~)] —(h(x, t+ ~) —h(x, ~))')'~'

(2)

This is to our knowledge the first time that an interface

(average ( ) over z c [1,L] and members of the ensemble),
we plot in Fig. 1(b) the temporal behavior starting from
both a fiat interface and a critical (saturated) state. We
observe a dramatic difference, with a critical state time
correlation [23]:

W(L, t) oc t~"" with P„;t ——0.69+ 0.02 .

model shows widely different predictions of transient and
saturated time scalings. Also we find that the interface
motion clearly breaks the Galilean invariance [1] because
y+ y/P„;t ——1.56 + 0.05. The open circles show that the
fraction of activated sites (equals the zeroth moment of
the activity) scales as N(t) oc t s+0 o2. The solid circles
display the temporal behavior of the infinite moment of
the height-height correlation function

H(t) =
(~ max (h(x, t + ~) —h(x, ~)) —min (h(x, t + r) —h(z, ~)) i)r, (3)

with x E [1,L] and the average ( ) taken over ensemble
members at various times ~ after saturation. We observe
that

H(t) oc t~"" with P„;,= 0.41 + 0.02,

tween successive local events at this point. One observes
that this distribution also exhibits a reasonable scaling

PFirst (t)

which is significantly different from the scaling of the sec-
ond moment W [24], in contrast to the temporal behavior
of the model of Ref. [20]. We call this behavior tempo-
ral multiscaling, in contrast to spatial multiscaling [25]
which is not observed in this model [16].

A main ingredient in the model is that one keeps a one-
dimensional directed interface without overhangs, thus
making the distribution of activities along this interface
especially simple to study. We describe the activity in
terms of events on a critical string: An event starts by
finding the site with minimal g along the interface. This
initiates a local avalanche which, as demonstrated in Fig.
2, has a characteristic size (defined as the number of ad-
justed sites). Let x(t) and x(t+dt) be the positions of the
event at time t and t+dt, respectively. With dt = 1/L we

consider the proceeding event after the event occurring
at t; if dt = 2/L the second event after t is considered,
etc. , and calculate the probability distribution function

P(X~q) in the variable Xgq ——~x(t) —x(t + dt) ~. In Fig.
3(a) this distribution function is shown for different val-

ues of d&, d& =L' L' L' I and L . We obtain a very
good power law scaling

Px(Xgg) = A(Xgg, dt) Xq,

where p = 2.25 + 0.05, independent of the value of dt.
In Fig. 3(b) we have for a given point measured the

probability distribution function of time differences t be-
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I'IG. 2. Size distribution of local avalanches in the model

and in a LFI with f = 1.25. The various dotted lines indi-
cate different system sizes in the LI I; I = 1024 and 4096,
respectively.

with the nontrivial exponent r~ —1.2 + 0.1 (for times
1/L « t « 1). We remember that if the activity along
the interface exhibited a random walk with bounded step
sizes, then PF;„t(t) oc t i s corresponds to the distribu-
tion of first return times for random walkers. Thus, as
w & &, the motion of activity is less constrained than a
finite step random walker. Also note that in Fig. 3(b) we

display, at saturation, the chance of activity in a point
X, at a time t+ w, given there has been activity in X at
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time 7.. We observe

PA, t, ; (t) oc t

with exponent ~~ ——0.62 6 0.04 resembling the scaling
of activated sites N(t) oc to.ss+e o, suggesting that tern-
poral spreading of activity balances the decrease in the
local probability of activity. We stress that the power
laws in Eqs. (4), (5), and (6) are in sharp contrast to
the normally studied cases [1,3], with uncorrelated noise
implying that these distributions are flat.

It is tempting to relate the measured temporal and
spatial activity correlations by simply assuming that the
motion of activity performs a Levy flight of uncorrelated
subsequent jumps [4], with a jump length given by a Levy
flight exponent f:

FIG. 3. (a) Spatial distribution Eq. (3) of activity cen-
ters, separated in time by dt =1/L, 2/I, 4/L, 10/L, and
100/L where the system size L = 8192. The dotted line
shows the input activity in a LFI with f = 1.25 with slope

f —1 =——2.25 (as sampled during the numerical com-
putation), made to fit the scaling of the model. (b) Probabil-
ity for activity in a given site as a function of time: "Steep"
full line: first return; "Hat" full line: all returns. The dotted
lines are the corresponding LFI results.

f = p —1 = 1.25+ 0.05. In a Levy flight subsequent
jumps are separated by a distance X e [1,L/2] given by
X oc g /f, where g is a random number uniformly
distributed between 0 and 1. The direction of the jump
is chosen randomly. Using a Levy flight with f = 1.25
to locate the next activity center, we thereafter add one
unit at this center (h —+ tr+ 1) followed by adjustment of
neighbor sites precisely until all slopes remain less than
or equal to 1 (periodic boundary conditions). We call this
model the Levy flight interface model (LFI). In Figs. 1(a)
and l(b) the dotted curves show the results of the LFI.
As seen in these figures, the temporal roughening of the
model is approximately reproduced by the LFI whereas
the measured yz, F~ ——0.78 + 0.05 is significantly different
from that of the model. In Fig. 2 we furthermore see
that, in contrast to the model, avalanches in the LFI are
nonlocal, in the sense that their size is power law dis-
tributed with a cutoff dependent on the system size. In
Fig. 3(b) we have indicated with dots that the scaling of
the first return times of the activity in the LFI roughly
matches the behavior of the model, whereas the scaling
of all returns fails completely (see [26]).

In order to understand the difference in the large scale
behavior between the LFI and the model, we have studied
correlations between subsequent jumps. It appears that
these are highly correlated in the model, whereas a basic
assumption of the LFI is uncorrelated subsequent jumps.
To be specific, we define for two intervals L~, L2.

(
~ p(vr v2 ) 0) —p(vr v2 ( 0)C Aj, 62) =

p(vl v2 & 0) + p(vr v2 ( 0)

where vi and v2 are subsequent jump vectors of activity
centers and p denotes the corresponding probability. For
A»A2 = [0, L/4] with system size L large, we obtain
numerically C(Ar, A2) = —0.055 + 0.005 whereas, for
I FI, C:—0 always. If one considers large jumps only, we
obtain C ——0.8, thus reflecting the enhanced probabil-
ity of making subsequent reverse jumps between activity
centers that are widely separated. Furthermore, C turns
out not to be symmetric in (Ar, 62). Investigations of
the three jump correlations also reveal significant addi-
tional correlations. This altogether indicates that the
large scale dynamics of the model is not given entirely
by only one exponent f Indeed both. the static expo-
nent y and the temporal activity exponent ~~ are not
compatible with the LFI.

Finally we would like to stress the fact that the model
breaks the Galilean invariance. In usual descriptions of
large scale evolution of interfaces in terms of the KPZ
equation [1],

PL, y(X) dX = X f 'dX (8)

From comparison with the measured spatial activity cor-
relation in the model, we are particularly interested in the Galilean invariance (y + y/P = 2) is imposed by
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the nonlinear term. We do not know whether the dy-
namics of the present model can be described by such a
Langevin equation, but within such a framework Medina
et al. [27] demonstrated that for a stochastic noise ri with
sufBciently strong power law temporal correlations the
Galilean invariance would be broken; in fact they show
that y+ y/P ) 2. Our model, as well as the LFI, breaks
the Galilean invariance by y + y/P„;t ( 2, thus reflect-
ing a fundamental difference between the additive noise
considered by Medina et aL [27] and our subsequent ac-
tivity of separated events. This difference might also be
reflected by the presence of temporal multiscaling in our
model that is connected with the accumulation of sub-
sequent local activity in separated regions of the string
[28].

We conclude by emphasizing the interesting dynamical
and spatial power law correlations that naturally appear
in the critical state of an interface that develops accord-
ing to the present model. Whereas the roughness expo-
nent y reflects the scaling of the transverse with the lon-
gitudinal. correlation length in directed percolation [16],
the other exponents, such as p, P„;t, P „t, and r~, are
at present without any such analogies to directed per-
colation. Comparison to a Levy flight interface model
has demonstrated that using only the spatial correlation
exponent p as input, we approximately reproduce the
exponents P„;, and P~, but not y and ~~.

Horvath, Family, and Vicsek [15] have, for flows

through porous media, experimentally extracted a power
law distribution of global additive noise. However, we
think that measurements of the distribution of spatial
distances between possible subsequent local avalanches
could establish a new way of analyzing some roughening
interface phenomena.
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