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The path integral for the propagator is expanded into a perturbation series, which can be exactly
summed in the case of h'-function perturbations giving a closed expression for the (energy-dependent)
Green function. Making the strength of the 6-function perturbation infinite repulsive produces a totally
reflecting boundary, hence giving a path integral solution in half spaces in terms of the corresponding
Green function. The example of the Woods-Saxon potential serves by an appropriate limiting procedure
to obtain the Green function for the step potential and the finite potential well in the half space, respec-
tively.

PACS numbers: 03.65.Db

Although the technique of exactly computing Feynman
path integrals seems to reach a saturation point as far as
generic Lagrangians with smooth long-range potentials
are concerned, there are still a whole range of problems
which lack a systematic approach. Boundary problems
and piece-wise constant potentials belong to these classes
of problems. Steps forward to a solution of the latter
have been taken by, e.g. , Barut and Duru [1], for the
former, e.g. , by Clark, Menikoff, and Sharp [2] and Car-
reau, Farhi, and Guttmann [3]. Barut and Duru ob-
tained a formula for the propagator for some piece-wise
constant potentials via a canonical transformation to
Hamilton-3acobi coordinates, however, left with one (or
more) additional integration(s) over momenta. In Refs.
[2,3] boundary conditions could be implemented into the
path integral by means of cleverly chosen &function per-
turbations in the Lagrangian generating the correspond-
ing boundary conditions. However, it is often more ap-
propriate to consider the (energy-dependent) Green func-
tion G(E) instead of the propagator IC(T). For instance,
the whole range of problems where a space-time transfor-
mation [4-6] must be performed demonstrate the con-
venient use of the Green function G(E).

In this paper I discuss boundary problems with Dirich-
let boundary conditions in path integral problems by ex-

plicitly stating closed formulas for the Green functions.
As we will see the corresponding formulas can be derived
by implementing a &function perturbation into the path
integral, which leads to an exactly summable perturba-
tion expansion. Making the strength of the &function
perturbation be infinite repulsive produces an impene-
trable boundary; i.e., Dirichlet boundary conditions are
generated. It is possible to consider arbitrary one-
dimensional potential problems as long as the Green
function for the problem without boundaries is known.
The specific example of the smooth step and the Woods-
Saxon potential then gives by an appropriate limiting pro-
cedure the path integral solution for the step potential
and finite potential well in the half space, respectively.

The general method for the time-ordered perturbation
expansion is quite simple. We assume that we have a po-
tential 8'(x) =V(x)+ V(x) in the path integral and we

suppose that W is so complicated that a direct path in-
tegration is not possible. However, the path integral cor-
responding to V(x) is assumed to be known. We expand
the path integral containing V(x) in a perturbation ex-
pansion about V(x) in the following way. The initial ker-
nel corresponding to V propagates in ht time unper-
turbed, then interacts with V, propagates again in another
ht time unperturbed, and so on, up to the final state.

0031-9007/93/71(1)/1 (4)$06.00
1993 The American Physical Society



VOLUME 71, NUMBER 1 P H YSICAL REVI EW LETTERS 5 3ULY 1993

This gives the series expansion [7,8] (x 6 lit)
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I have ordered time as t'=tp&t~ &t2& &tg+f t and paid attention to the fact that K(tj —tj. () is d-ifferent
from zero only if tj & t~ —(. We consider now an arbitrary one-dimensional potential V(x) with an additional 8-function
perturbation [9] W(x) = V(x) —yB(x —a). The path integral for this potential problem reads

r

&x(t")-x" i ~ m. 2K (x ",x';T)=, , 2)x (t)exp —, x —V(x) + y8(x —a) dt (2)
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We have assumed that the path integral (Feynman ker-
nel, respectively) K for the potential V is known, in-

cluding its Green function,
W oo

G (x" x'E) =— dTe' "K (x" x' T) . (3)
p

Now, introducing the Green function G (E) of the per-
turbed system similarly to (3), it is easy to sum up the
emerging geometric power series due to the convolution
theorem of the Fourier transformation, and we obtain
[10]

G ( ', ';E) =G ( ", ';E)

G (x",a;E)G ' (a,x';E)
(4)

G (a,a;E) —1/y

where it is assumed that G( (a,a;E) actually exists.
The energy levels E„of the perturbed problem IV(x) are
therefore determined in a unique way by the denominator
of G (E). Radial problems, of course, can be discussed
in a completely analogous way. It is straightforward to
incorporate more than one &function perturbation and

! obtain the Green function for N 6-function perturbations,
which can be proven by induction.

In (4) we now consider the limit y
—~, which has

the effect that an impenetrable wall appears [2] at x =a.
We set lim„G( (E)—=G "' (E); i.e., we obtain

G'"""(x"x'E) =G'"( " 'E)

G' '(x" a.E)G' '(a x'E)
7 '7 (5)

G (a,a;E)
Repeating the procedure for the twofold 6-function per-
turbation Green function, we consider for two &function
perturbations with strengths y( z located at x=a, b, re-
spectively, the limit lim„, „, G ' (E)—= G '" (E)
and we obtain the Green function for the motion in the
box a & x & b By the sa. me method it is possible to con-
sider motion constraint by radial boxes and rings, respec-
tively, with the corresponding radial Green function
Gt( )(E) taken into account.

We consider the "smooth-step" potential. Its path in-
tegral solution is given by [11,12] (b, R, Vp & 0 constants)
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with x& & the larger or smaller of x', x". Here we denote m& 2= J2mR(Q E —Vp+'v E)/A. With—a barrier at
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x=a, such that we consider motion in the half space x & a, we obtain that the Green function of the Woods-Saxon po-
tential is given by (5), and the bound state energy levels are determined by (with 0 &!E„!& Vp)

2F( P„iX—„,P„iX—„+1;1+2P„;— 1
—tanh =0.1 a —b (7)

Here we denote P =P (E) = —2mER /h, , X =k (E) =2m(E+V )R /h, , P„=P(E„),and A,„=X(E„).
In the limit R 0 the smooth-step potential transforms into the step potential V (x) = [e(x—b) —I ] Vp with step

height Vp. We obtain for the Green function G (E)(k k/R, g p/R)
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[alternatively we can write e """'" ~» =(g+ik)/(g —ik)]. The continuity of the Green function at the location of the
step at x =b is easily checked.

Considering now a totally rellecting barrier at x =a & b we obtain for the potential well (PW) in the half space x & a
the Green function
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Again, the continuity at x=b and the boundary condi-
tions of the Green function are easily checked. The
bound state energy levels are determined by the poles of
G ( ) yielding to the well-known result [13] k/g= —tank (b —a).

In this paper I have presented a perturbation expansion
approach to path integral problems with Dirichlet bound-
ary conditions. The use of a perturbation expansion was
necessary because the construction of the Feynman kernel
of a Dirichlet problem by means of the "mirror" principle

! fails generally because the entire kernel does not have the
required reAection symmetry. I obtained closed formulas
of the corresponding Green functions for arbitrary sys-
tems put into half spaces, boxes, radial boxes, and rings,
respectively. Particularly, in the case of radial boxes we
can consider the corresponding motion inside a radial box
outside a hard sphere. Of course, numerous examples
could serve to demonstrate the power of the presented
formalism; for example, the linear potential in the half
space, the radial harmonic oscillator including a I/r
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term inside a radial box, motion under the influence of an
Aharonov-Bohm solenoid outside a hard disk located at
the origin, and many more.

As examples of the technique I chose the cases of the
smooth-step potential, respectively the Woods-Saxon po-
tential, which gave the path integral solution in terms of
the corresponding Green functions for the step potential
and the finite potential well in the half space, respectively.
These two examples are of considerable importance, be-
cause the treatment of piece-wise constant potentials in

the path integral have been very rudimentary up to now.
Hence, two examples of an entire new class of quantum
mechanical problems are added to the list of exactly solv-
able path integrals [5]. The present treatment also has in

contrast to Ref. [I] the advantage of stating explicitly
simple quantization conditions for bound state solutions.

What remains is a thorough discussion of, say, Neu-
mann boundary conditions in the path integral along the
lines presented here for Dirichlet problems. This topic,
however, will be addressed elsewhere.
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