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Coulomb Blockade of Tunneling into a Quasi-One-Dimensional Wire
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Tunneling into the correlated electron system in a quantum wire is considered. For the first time,
the problem is solved for an arbitrary number of transverse electron modes in the wire. Thp tunnel
density of states has power-law asymptotics at low energies, v(e) oc e . A simple formula expressing
o. in terms of velocities of soundlike excitations (plasmons) propagating along the wire is obtained
and the eigenvalue equation for these velocities is found. The general result for o. allows one to
extrapolate correctly between the known cases of a one-mode wire and a wide three-dimensional
wire.

PACS numbers: 73.20.Dx, 73.40.Gk

It is well known that Coulomb blockade in a sin-
gle junction is smeared due to quantum Huctuations of
charge in the leads (see, e.g. , a review [1]).These Huctua-
tions were considered [2—4] by means of a phenomenologi-
cal model in which the electron after tunneling through a
junction interacts with the electromagnetic modes of the
environment. Such a model adequately describes tunnel-
ing into a wide metal wire and yields the power law for
di6'erential conductance:

dI
cx U, U~O.

Here the exponent 0, is determined by the zero-frequency
impedance Z(0) of the wire (i.e. , "environment"),

(2)

The width of a metal wire normally is much larger than
the Fermi wavelength. The opposite limit can be realized
in semiconductor heterostructures, where it is possible to
produce a wire carrying only one or a few transverse elec-
tron modes by means of a strong lateral confinement of
the two-dimensional electron gas [5]. Microscopic the-
ory of tunneling into a one-mode interacting electron gas
was developed recently [6, 7]. It follows from [6] that the
power-law dependence (1) is still valid for tunneling into
the edge of a one-dimensional (1D) wire. However, the
exponent 0, is equal to

Here m is the effective electron mass, n is 1D electron
density in the wire, and K is the compressibility of inter-
acting electron gas.

In the experiments with semiconductor heterostruc-
tures the width of the wire may be changed by adjusting
the potential on the gates [5]. This gives rise to the inter-
esting question of the generalization of power-law depen-
dences (1)—(3) in the case of tunneling into a few-mode
wire. It is important to note that the straightforward ap-

plication [8] of formula (2) to this problem gives an incor-
rect result. In particular, tunneling into a one-mode wire
with noninteracting electrons must be described by a con-
stant density of states near the Fermi level, and there is
no singularity in dI/dV [9]. On the other hand, the sub-
stitution of the corresponding impedance Z(0) = 27rh, /e2
into (2) leads [8] to the unreasonable result n = 2. In
this paper we develop a consistent theory of tunneling
into a multimode wire. This nontrivial problem can be
solved analytically for the case of a long-range interac-
tion between electrons. Fortunately this approximation
adequately describes a wire formed in a semiconductor
heterostructure. As a result of the long range of the in-
teraction electron-electron scattering with large transfer
of momentum is suppressed. This allows us to propose a
simple model of a multimode electron liquid, generaliz-
ing the well-known Luttinger model of a one-dimensional
interacting electron gas. Our theory is valid for any nurn-
ber N of modes and reproduces the correct limits (2) and
(3) for N = 1 and N ~ oo.

The differential conductance dI/dV oc P, ~t, ~z (evV)
is determined by the amplitude ti of tunneling into the
i-th mode and the tunnel density of states in this mode
v, (w). The latter can be expressed in terms of the Green
function,

(4)

where operator QI creates an electron near the edge of
the wire in the i-th mode.

To calculate the Green function in Eq. (4) we employ
the bosonization technique [10]. The Hamiltonian of the
wire H = Hp + H;„t consists of a free electron part Ho
and the electrostatic interaction H;„t, . In boson represen-
tation,

+ —p, v, (u', ) i
otz,p, (x) 1

i i

where p, = mni is the density of electron liquid in the
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i-th mode, u, (x) is the displacement operator of this
liquid, and p, (x) is the conjugate momentum density
operator, [u, (x), pz(y)] = ihb, ~6(x '—y). Velocity u, is
proportional to the electron density in the i-th mode,
v, = aran, /m, and equals the Fermi velocity in the non-
interacting 1D electron gas at this density. Electron-
electron interaction with potential V(x —y) is described
by the Hamiltonian

to a diagonal form,

II =) Pi (k)+ m—sik Qi(k) ]dk, (8)

and describes N soundlike modes with the velocities s~.
The initial variables u, (x), p, (x) are related to the new
ones by a unitary transformation,

N

H;„, =-)
2

n, u', (x)n, u,'(y) V(x —y) dy dx.

N

u. (x) = ).&'i
ni l= 1

N

Pi, (x)Qi (k) dk,

Pg (x)Pi (k) dk. (10)
Products n, u', (x) have the simple meaning of the devi-
ations of the electron density at point x from its av-
erage value n, . The behavior of the tunnel density of
states v, at small ~ is determined by long-wavelength
quantum fiuctuations of the fields u~(x). To consider
these long-wavelength fluctuations, one can substitute
V(x —y) = Vpb(x —y) into (6) and obtain

Here Pg(x) = g2/vr sinkx; the sound velocities si and
the components of orthogonal matrix p, ~ are determined
by the following eigenvalue problem:

u,'(x)u'(x)dx, (7)

OO N
1 iwt g s)r, (cu) = Re — e' exp —)
7T O L=1

'Ui

where Vp = J V(x)dx is the zero-momentum Fourier
component of the interaction potential. For the most
realistic case of a wire formed by the gate-induced de-

pletion, Coulomb potential V(x) = e /e'x is screened at
x & D, and Vp ——2(e /s) lnkFD. (Here k~ is the Fermi
wave vector of electrons in the wire, D is the distance
between the wire and the gate, k~D && 1; we assume
that the wire and the gate are separated by a medium
with dielectric constant s.)

Potential V(x) in the Harniltonian H;„i describes the
interaction between charge densities in two difFerent cross
sections of the wire. We neglect the matrix elements
of interaction that cause intermode transitions. These
elements correspond to the Fourier components of the
potential with nonzero wave vector k k~, and are
small for a smooth long-range potential. In the case of
Coulomb potential, the intermode elements do not con-
tain a large logarithmic factor ln k~D. The same param-
eter allows us to neglect the backscattering of electrons
within one spin-degenerate mode: it is well known [ll]
that for repulsive interaction weak backscattering leads
only to a small renormalization of interaction constants.

The quadratic Hamiltonian (5),(7) can be transformed

II, = exP (
— II,), (12)

where

p, (x)dx.

Expression (12) for the creation operator has an obvi-
ous meaning of a shift operator of all the electron liq-
uid in mode i by a distance n, towards the wire edge.
Such a shift of electron liquid corresponds to formation
of extra charge density en, u', = e6(x) at the edge and
describes the charge of a created electron. Formula (12)
essentially coincides with the standard definition for the
electron creation operator obtained in the bosonization
technique [10]. The latter definition contains an extra
factor exp(ian, u, ) which equals 1 due to the boundary
condition u, = 0 at the edge of the wire.

Since the Hamiltonian (5),(7) is quadratic, the electron
Green function in Eq. (4) now can be easily found. The
method is analogous to the one used in the calculation
of the Debye-Wailer factor for the Mossbauer effect [12].
The density of states (4) takes the form

(14)

To calculate the tunnel density of states (4) we have
to express the fermion creation operator g~ via boson
variables u, and p, . We adopt the following definition:

The integral over k in Eq. (14) diverges logarithmically at the upper limit. The cause is that Hamiltonian (8) was
derived in the long-wavelength approximation and is valid only at k smaller than the inverse of the characteristic
radius rp of interaction potential V(x —y). So we have to introduce a cutofF factor e into the integral over k in

Eq. (14), in complete analogy with the well-known theory of a single-mode Luttinger liquid [13). Similarly to Eq. (1),
we find from (14) for the rnultimode case v, (w) Cx a ', with the exponent
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(15)

This equation is the central result of our paper. It re-
duces the problem of low-energy asymptotics of the tun-
nel density of states to a simple eigenvalue problem (11).

For practical purposes, it is interesting to determine
the dependence of a., on the continuously varying one-
dimensional density of electrons. In experiments the tun-
neling of gate voltage [5, 14] allows one to increase to 1D
density n by continuous widening of the channel or by in-
creasing the Fermi energy EF. For any reasonable num-
ber of modes the eigenvalue problem (11) can be easily
solved numerically. An example of numerical results for
n, (EF) is shown in Fig. 1. We used a model of wire with
electron confinement in the transverse direction caused
by a parabolic potential

of the relation s& = gnq/mK between sound velocity
and compressibility Eq. (16) reproduces the result (3) of
Kane and Fisher [6).

To study analytically other peculiarities in Fig. 1 and
find the relation between (15) and the result (2) for a
wide wire, we proceed further with solving the eigenvalue
problem (ll), which is possible due to separability of the
interaction term. The equation for eigenvalues st can be
easily found:

N
vi vrh

2 2
i=1 l i 0

Matrix elements p, ~ can be expressed in terms of the set
of velocities vi directly related to the electron densities
in the corresponding modes, v, = 7rhn, /m, and the set of
sound velocities s~ determined by Eq. (17),

m02 2

U(y) = Vi
/il

(
2 2)2

N
V)

(&2 V2)2
l j

(18)

8j
A1 = ——l.

V1
(16)

At small E~, both v1 and s1 (x v1 are small, and o.1 (x:
1/2

v1 ~ oo ~ This corresponds to the singularity a 1 oc
—1/2

E / at E —+ 0 in Fig. 1. Note also that with the help

'0

FIG. 1. Exponents o;, describing the low-energy tunnel
density of states, v, oc e, , for diferent modes i. Dependence
of n, on Fermi energy is shown for a wire formed by potential
U(y) = mA y /2 confining electrons in the transverse direc-
tion, E = Ey/hA —1/2. The singularities at E = 0, 1, 2, . . .
originate from switching of new modes. The interaction mea-
sured in dimensionless units (Vo/vrh)(m/2M) / for this plot
equals 5.

and plotted o.i as a function of the dimensionless variable
E = Ey /hA —1/2.

To understand the nature of singularities in Fig. 1,
we consider analytically the case of a one-mode wire
corresponding to the interval 0 ( E ( 1. Solution
of the eigenvalue problem (11) is obvious: pqq = 1,
sq = (vz + vqVp/vrh) . Substitution of pqq = 1 into
Eq. (15) gives

For a given set of densities n, , solution of (17) is equiv-
alent to finding of all N zeros of a polynomial. In the case
of two modes explicit analytical expressions for nq and
n2 can be easily found from Eqs. (15), (17), and (18). We
give here only formulas for two limits, when the results
can be presented in a compact form. We start from the
case v1 —+ v2 that corresponds, e.g. , to a single transverse
mode with spin degeneracy. In this case,

"/~( —1/2, sl = (vy + 2vlVp/~~), &2 = vl.

0', 1
) 1/2

~h, (vg + v2) )
1/2

( vrfi(v, + U2) )
V1 V1+

V1+ V2 V2
(20)

The exponent o,2 diverges at v2 ~ 0, similarly to the
behavior of o;1 observed for the case of a single mode.
It is interesting to note, however, that the coefficient in
the singular part of o,2 is parametrically smaller than
the proper coefficient in nq, see Eq. (16), and does not
depend on Vp. This is due to the effect of screening

(The result for the sound velocity sq coincides with the
well-known expression for the plasmon velocity in the
Tomonaga model, see, e.g. , [15].) It now follows from
(15) that

~& = ~2 = —,'[{1+2Vp/~»g)' ' —1].

This formula relates the exponents directly to the inter-
action potential Vp. Previously o; was expressed [16] in
terms of phenomenological spin and charge conductances
of the 1D I uttinger liquid.

In the limit of strong interaction, Vp )) 7rh, (vq + v2),
Eq. (18) can also be solved easily, and one finds

992



VOLUME 70, NUMBER 7 PH YSICAL REVIEW LETTERS 15 FEBRUARY 1993

of the Coulomb interaction in the second mode by the
electrons of the first mode. Obviously, screening acts
in the same way and leads to a similar effect for the
higher modes (as illustrated by Fig. 1). Note also that
at small v2 the expression (19) for err differs from its
value v2 = 0 (when the second mode switches on) by
6'nr = —(ar/2vr)v2 oc gE——1. This square-root pecu-
liarity in nr (E) and similar peculiarities at E = 2, 3, . . .
are clearly seen in Fig. 1.

Now we consider the case of a wide wire in which the
number of transverse modes is large: N )) 1. Our goal
is the calculation of o,, with the accuracy O(1/N). First,
we use the unitarity of matrix p, t to rewrite the result
(15) as follows:

there are also excitations with velocities of order of v~.
These excitations represent Fermi-liquid quasiparticles.
Therefore, the tunneling electron creates not only a plas-
mon, but also quasiparticles. As we have shown above,
corresponding contribution cancels —1 in formula (15).
The possibility of such a cancellation was conjectured by
Girvin [17].

The authors are grateful to A. M. Finkelstein, M. P. A.
Fisher, S. M. Girvin, C. L. Kane, A. I. Larkin, I. M.
Ruzin, and B. I. Shklovskii for helpful discussions. This
work was supported by NSF Grants No. DMR-9117341
and No. PHY89-04035, and by Research Fund of the
Graduate School of the University of Minnesota.

(21)

In the limit N + oo the largest of the sound velocities,
sr = (nUp/m) ~ oc v N, grows infinitely while the others
remain finite: vt ( s~ ( vt r for l & 1. [This directly fol-

lows from the dispersion relation (18) for the velocities. ]
So we extract the term corresponding to t = 1 in sum

(21) and consider the remaining terms separately. Since
the matrix elements (20) decay rapidly at ~i

—
l~ )) 1,

only a few of these terms with ~i
—l

~

I should be
taken into account. Each of them can be estimated as

p, &
~st —v, /v, 1/N. Thus with the accuracy of O(1/N)

only the term with l = 1 contributes to the sum (21). Us-

ing the value of p, q in the limit sq )) v~, we find

s] ms'
~in (22)

One can easily see that a'.

(Up/~hvar

N) r~2; i.e., we did
not exceed the accuracy 1/N of the calculation. Equation
(22) shows that for a wide wire the exponent n, is de-
termined only by the velocity of macroscopic plasmon s~
and one-dimensional density of electrons n. This result
coincides with formula (2) obtained in macroscopic ap-
proach [3, 4], because Z(0) = msr/ne . [One can see this
by comparing the energy I Z(0) dissipated by current
I = nev in a half-infinite wire with the energy mnv sz of
emitted plasmons. ]

Comparison of Eq. (17) with Eq. (22) shows that the
exponents a being expressed in terms of the plasmon ve-
locity sp and total 1D electron density n differ by 1 in

the cases of one-mode and wide wires. The difference is
due to the fact that in a wide wire, along with a plasmon,

~ ~ On leave from the Institute of Solid State Physics,
Chernogolovka, Moscow distr. , 142432, Russia.
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