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Flux Quantization and Pairing in One-Dimensional Copper-Oxide Models
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We obtain the ground-state energy Ep(&b) exactly as a function of flux & in a one-dimensional
"copper-oxide model" on rings of finite circumference L, including on-site interactions and a nearest-
neighbor interaction V. For V of the order of the charge-transfer gap or larger, the model extrapolated
to large L exhibits Aux quantization with charge 2e, and a slow algebraic decay of the singlet supercon-
ducting correlation function on oxygen sites. The extrapolated superfluid stiff'ness appears, however,
finite only for not too large V. These results suggest a superconductive state at V of order the charge-
transfer gap of the model, but a paired and phase-separated state at larger V.

PACS numbers: 71.30.+h, 74.10.+v, 74.20.—z

Shortly after the discovery of superconductivity in

copper-oxide-based materials, three distinct electronic
models were proposed, which have since been extensively
investigated. Anderson suggested that the essential phys-
ical features of the materials can be modeled by the two-
dimensional (2D) one-band Hubbard model [1]. Varma,
Schmitt-Rink, and Abrahams (VSA) presented a 2D
model consisting of three orbitals per unit cell [2], name-

ly, the Cu 3d&2 y2 and oxygen 2p, 2p~ with hopping be-
tween them, a repulsive interaction on Cu sites, Ud, and
on oxygen sites, Up, as well as a nearest-neighbor cop-
per-oxygen interaction V. Independently, Emery present-
ed a closely related three-band model [3], in which the
parameter V was assumed to play no role. In Ref. [2], it
was argued that the three-band model with V included
(hereafter denoted as the VSA model) is the minimum
model necessary to characterize the essential properties of
the materials. In particular, the parameter V was shown
to be important in inducing low-energy charge fluctua-
tions in the metallic state. It was also argued that such
fluctuations promote a superconducting instability and
more recently that they may also lead to the anomalous
normal metallic-state properties of the high-T, cuprates
[4], which at half filling are charge-transfer insulators.
In this paper, we demonstrate that the parameter V is
central in inducing pairing at T =0 in the one-
dimensional (1D) version of the three-band model.

The 10 version of the VSA model may be written as
H =Ho+Hv+Hv, where

H o =T(+)+a Q [np, ndt], —
,

HU Ud End, ', tnd ' J+Up+ p' nlnp

Hy = Vend; [np, —J+np, ]. .

Here, n; =z„n, ; =z ~, ; ~;, where a denotes an
orbital index [a E (Cu, O)], and cr a spin index [cr
E (f, ] )]. Throughout, g; is taken to run over unit cells,

chosen such that the oxygen is to the right of copper. We
have introduced the parameter d. = (E„Ed)/2, with

Ep & Ed in a hole notation, where Ep and Ed are site en-
ergies on the oxygen and copper sites, respectively, and
the zero of energy has been chosen at (Ep+ Ed )/2
Furthermore, the quantity T(@) is the kinetic energy
operator of the system in the presence of an external flux

@, and will be specified below.
The model of Eq. (1) with T(tIi) =0 is exactly solvable

for arbitrary L in 1D by the transfer-matrix method [5].
For Ud large compared to Up and 5, and density away
from half filling, increasing V to 6(A) leads to a com-
bined charge-transfer and phase-separation instability.
In this instability, the average charge on the p orbitals in-
creases at the expense of the charge on the d orbitals.
The former are either nearly doubly occupied or empty,
as reflected by the compressibility tending to infinity.
Mean-field calculations also show such instabilities with
ftnite kinetic energy [6], but in addition reveal a region of
parameters where s-wave superconductivity exists without
being preempted by phase separation. A central question
is whether one can see, through exact calculations, that
kinetic energy favors superconductivity over the charge-
transfer/phase-separation instabilities for any filling N
and in any region of the Parameter sPace (Ud, Up, V, h),
with purely repulsI. ve bare interactions.

To explore these issues, we have considered the
ground state ene-rgy Eo(&) of the Hamiltonian of Eq.
(1), in a ring geometry with L/2 number of Cu-0 unit
cells (L being an even integer representing the total num-
ber of sites in the problem). The ring is threaded with a
flux + by applying a constant vector potential of magni-
tude A =(hc/e)&/L along its circumference. The effect
of the vector potential A = (Ac/e)&/L is included by
a gauge transformation (taking Jtt =e =c =1), c,

c, exp(im&/L ); C& is measured in units of 2tt
throughout. Thus, we have

T(+) = —tpdg[e' cj; ~p, +e ' cj; ~p, J +H.c.].
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From the ground-state energy Eo(N) one obtains infor-
mation about flux quantization and possible superconduc-
tivity: In a normal one-dimensional ring, the ground-
state energy is a periodic, even function of @ with period
No ——hc/e. If the fiux N is measured in units of the IIux
quantum Nii, we then have Eo(N) =E 0(N+n); n

=0, ~1, ~2, Hence, for a normal metallic phase,
one then has stable phases at particular values of the
flux, @=0, ~ 1, ~ 2, . . . , leading to flux quantization in

units of hc/e [7]. In a superconducting state one further
has Eo(&) =ED(&+n/2) in the thermodynamic limit
L ~, showing that ne~ stable phases appear also at

in addition to the ones at
=0, ~ 1, + 2, . . . in the normal metallic state. In systems
exhibiting superconductivity, flux is thus quantized in

units of @0/2 =bc/2e [7], hereafter referred to as anoma
lousPux quantization

Recently, the ground-state energy Eo(@) for the repul-
sive and attractive one-band Hubbard ring with finite cir-
cumference L and on-site interactions only, was con-
sidered in detail [8]. This model is exactly integrable for
arbitrary flux 4, and exact results for ground-state prop-
erties are thus available for arbitrary L. For the attrac-
tive case, which is known to exhibit singlet superconduc-
tivity, it was found that the results for this particular case
may be written as

i/2
n L

Ep &P+ ——Ep(@) =A
2

L
exp

For the attractive Hubbard model, ( is a length associat-
ed with a gap of spin excitation s in the system,
A=A(U, N) is a coefficient which depends on details of
the model, U is the on-site interaction, and N is the num-

ber of particles on the ring. Another quantity of interest,
which should be considered in conjunction with Eo(N
+n/2) —Eo(@) for the purpose of detecting super-
conductivity, is the superfiuid stiffness p, (L) =r) [L
x Eo(@)]/8@ ~+=o. This quantity should approach a

finite constant as L ~ in a superconducting or perfect-
ly conducting state limr p, (L)&0. Equation (2) and

limI p, (L) are diagnostic tools when looking for su-

perconductivity in the VSA model Eq. (I), with

A =A(Up, Uy, V, d, N).
We use Lanczos diagonalization to obtain the T=0 ei-

genvalues and eigenvectors of the Hamiltonian Eq. (1).
Considering numerical approaches of this kind, necessari-
ly limited in system size L, one should bear in mind that
also nonsuperconducting states may produce anomalous
flux quantization. For instance, it was recently noted that
Ep(N) =Eo(++n/2) is seen in exact diagonalization
studies of small rings of the repulse e one-band Hubbard
model [9]. We have, however, verified that no anomalous
/iux quantization occurs in this model when states of a
given total spin S are considered for all N. Were we not
to work in a subspace of fixed S, we would find a level
crossing between states with S =0 and S =1, and hence

Eo(&) =En(N+n/2). The crossing in energy of states of
different spin S occurs due to degeneracies in finite sys-
tems, and associated Hund's rule effects which are negli-
gible in the thermodynamic limit L ~. Furthermore,
Bogachek et ai. [10] have shown that a tendency to
anomalous flux quantization also occurs in charge-
density-wave (CDW) ground states in finite rings. The
competition between CDW and singlet superconductivity
will be discussed further below, when considering correla-
tion functions. Paired states which are crystalline or
phase separated will also tend to have Eo(&) =ED(&
+n/2) In. these cases p, will decrease with L, whereas in

a metallic or superconducting state p, should approach a
+nile constant as L ~. Hence, to test for supercon-
ductivity, one must calculate both Eo(@) and p„and
consider their behavior with increasing L. In our compu-
tations, we have been limited in system sizes L ~ 12 sites
for fillings N ) L/2 of interest, i.e. , systems doped beyond
half filling. Our conclusion on the existence of supercon-
ductivity at T=0 in the 1D VSA model, based on finite-
size scaling analysis alone, is therefore suggestive rather
than final. Hence, we also consider pairing correlations
explicitly, and discuss them within the general Luttinger
liquid framework.

We now turn to the details of the calculations. The
choice of the parameters is such that at half filling, the
model is a charge-transfer insulator with a gap of about 2
(in units of t~d), with 80% or more of the charge residing
on the d orbitals (corresponding almost to a Cu++ state
in the Cu-0 materials). With Ud =6, this is ensured for
both h, and V, in a range between 0 and 4. For such pa-
rameters, as V increases, one obtains a rapid transfer of
charge from copper orbitals to oxygen orbitals for sys-
tems doped beyond half filling, at the few fillings we can
consider. This was also seen in mean-field calculations
[6]. It is this region of parameters bordering on phase
separation which is the region of interest to us when
searching for superconducting ground states.

Figure 1 shows Eo(C) obtained in the VSA model with
parameters L = 10 N =8 Epd 1 Ud 10 Up =0 and
2h, —=E —Ed=2 for three values, V=1.0, 3.0, and 4.0.
For the latter two values, the system exhibits anomalous
flux quantization, but not for V=1.0. 3 critical value of
V is thus needed to see pairing. The filling in this case
corresponds to 60% doping beyond half filling. For small
V( 1, Eo(&) is minimum at &= —,', and has period 1,
characteristic of a normal metallic state. As V is in-

creased, a local minimum develops at N =
2 as a result of

level crossing between states of different total momen-
ta k =2am/L; m =0, ~ 1, +' 2, . . . . It is found that
Eo(2 ) —Eo(0) decreases rapidly as V is increased, con-
sistent with Eq. (2). As the on-site Coulomb repulsion on

oxygen sites U~ is increased, the effective attraction in-

duced on oxygen sites by the presence of V is reduced.
On-site pairing is consequently suppressed, and is not
present when U~ = Ud.

The 10-site chain with N=8 shows anomalous flux
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FIG. 1. Ground-state energy Ep(d&) vs flux &b for the ID
YSA model with I =10, % =8, U~ =0, Ud =10, 2h, =2, and
(pd = 1 for various values of V. Note the tendency to halve the
periodicity of Ep(@), characteristic of flux quantization with
charge 2e, when V=3.0 and V=4.0 but not at V=1.0. Note
also the rapid decrease of Ep( —,

' ) —Ep(0) as V increases, con-
sistent with a reduction of the Cooper-pair size with increasing
V. The thin broken lines are guides to the eye. @ is measured
in units of 2z.

quantization for a large range of V. Furthermore, by
inspecting the dispersion of the ground-state energy
Ep(k, &=0), it is seen that the system maintains quasi-
particies with mass within a factor of 2 [i.e., Ep(k, + =0)
remains dispersit e] from that at V=0 in the entire range
ot 2 ~ V ~ 4 we have considered, and where @p/2 quanti-
zation is observed. These are encouraging signs of a su-
perconducting ground state. However, the 10-site chain
is not convenient for carrying out the finite-size scaling
analysis mentioned previously. We therefore consider
next a 6-site and a 12-site chain, which also allows two
systems with identical fi jjings to be investigated. For the
6-site chain we have used W =4, while for the 12-site
chain, we have used % =8, which corresponds to 33%
doping beyond half filling. The filling is lower than in the
case of the 10-site chain; observation of anomalous Aux

quantization thus requires larger values of V [11].
In Fig. 2, we show Ep(N) for L =6 and L =12 with

A =4 and IV =8, respectively. For Ud =6.67, U~ =0,
2A =1.33, and V =2.67, we have /sE~(L =6)//sE~(L
=12) =0.3 and p, (L =12)/p, (L =6) =0.67, whereas for
V=4, the f'ormer is 0.07 while the latter is 0.25. Here,
we have defined /sE~ =Ep(N = —,

' ) —Ep(N =0). Note
the position of the minima at @=tr in the curves Ep(+)
between L =10 and L =6, 12 [12]. For a superconductive
ground state and I'or L)) g, p, should scale to a constant
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FIG. 2. Ground-state energy Ep(+) vs N for the ID VSA
model, with Uid 0 Ud=6. 67, 26=1.33, V=2.67, and t~d =1
for two values of I: I =6, %=4 and L =12, %=8. The inset
shows Ep(k) and a few excited states vs k for the 1D VSA
model with I =12, %=8, with U~ =0, Ud =6.67, 2h =1.33, and
V=4.00. The lowest energy is essentially dispersionless, con-
sistent with a phase-separated state.

while hF~ should decrease exponentially with large L.
For V=2.67 we find using Eq. (2) that g = 6, so we are
not in the asymptotic regime and the small decrease of p,
with increasing L is consistent with a superconducting
state. However, for V=4, we have g = 2; in this case the
sharp decrease of p, with L is suggestive of a paired, but
nonsuperconducting state. In the inset of Fig. 2, we show
Ep(k, +=0) for L =12, N =8 of such states, along with a
few excited states. The lowest energy is seen to be essen-
tially dispersionless, consistent with a pinned CDW or a
paired/phase-separated state, the latter also previously in-
dicated by mean-field calculations [6], In this context,
we note that for L =12 and V + 4, we find that the chemi-
cal potential p(N) =Ep(iV+1) —Ep(JV) at N =g is close
to its value at half filling, a signature of phase separa
lion. These results, which will be elaborated on in a
forthcoming paper, strongly suggest a superconducting
state in a regime of parameters locating the system close
to a phase-separation instability. The eftect on longer-
range Coulomb interaction (and the frustration of' phase
separation) [13] on the superconductivity will also be ad-
dressed.

To further investigate the possibilities of a supercon-
ducting state at T=O in the 10 VSA model with purely
repulsive interactions, we have considered the ground-
state singlet-pairing correlation function e(i —j)—:(A;+Aj), where I,; =cp; Icp; I within the Luttinger
liquid framework [14]. In a Luttinger liquid, the correla-
tion function for singlet superconductivity (SS) decays
asymptotically as I/x"', where ass is an exponent deter-
mined by the interactions in the problem. The correlation
function for a charge-density wave decays asymptotically
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as 2/x +Bcos(2kFx)/x"'" up to logarithmic correc-
tions, where A, B are model-dependent constants, and kF
is the Fermi wave vector. The dominating instability is

associated with the correlation function with the slowest
decay, which is seen to be that of SS when e~s ( a~Dw.
Furthermore, ass and avow are related in a way which
depends on whether the spin-excitation spectrum is

gapped or not. When the spin-excitation spectrum is

gapped [15], we have ass=i/K~ and acow =K~, where

K~ is a model-dependent constant which sets the scaling
dimension of all correlation functions [14].

We concentrate on obtaining K~ rather than B(i —j)
directly: K~ is expected to exhibit only very modest
finite-size eA'ects. The Hubbard chain with L =8, %=6
gives the value for K~ obtained via the Bethe ansatz in the
thermodynamic limit to within 5% [14,16]; similar results
are found in the supersymmetric t-J model [17]. K~ is

obtained from Eo(4&, N) via r) [I-Eo(/V)]/r)iV = (x/2)
xu~/K~ and t) [LEo(N)]/t)&b ~~=o=2u~K~, where u~ is

the velocity of charge excitations [14,16]. For Ud =6.7,
U~ =0.0, 26=1.33, and V=2.67, we obtain %~=1.3, and
hence cps & 1. The results K~& 1 implies that the gen-
eralized CDW susceptibility is less divergent at T=O
than that of SS. Singlet superconductivity is thus the
dominanting instability (Note .that in our calculations,
we cannot resolve the logarithmic corrections that distin-
guish triplet pairing from singlet pairing. ) We note also
that the eftective attraction on oxygen sites induced by V

may be simulated by a U & 0 oxygen-band Hubbard
model. For such a model, one has K~= I

—U/vFx& I

with vF =2sinkF in the weak-coupling limit [14,16], and

K~ & 1 quite generally. This again implies that supercon-
ductivity is favored over CDW.

In conclusion, flux quantization has been used as a di-
agnostic tool to investigate the existence of superconduct-
ing pairing in a fermion system with purely repulsive in-

teractions. The VSA model, Eq. (1), promotes supercon-
ductive pairing in I D at T=O. The pairing is induced by
an intersite Coulomb interaction V between the copper
and oxygen sites of order the charge transfer gap. The
ground state of the model in the relevant parameter re-
gime has total spin S=O, and the intersite interaction V

electively produces an attraction on oxygen sites. To in-

vestigate the nature of the paired state, we have obtained
the Luttinger liquid correlation exponent K~, showing
slow algebraic decay of the correlator for superconduc-
tivity on oxygen sites as well as a slow algebraic decay of
the CDW correlator. In the 1D VSA model at T=O the
dominant instability has, however, been shown to be due
to superconducting pairing by a detailed analysis of the

correlation exponents. The superconducting phase is lo-

cated close to a phase-separation instability of the model.
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