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We have studied the relaxation of off-center Li* ions in KTaOs by dielectric measurements on 1% and
1.5% crystals, from 20 Hz to 2 MHz and from 4 to 200 K. The shape of the ¢ vs £ Argand diagrams
demonstrates the existence of a distribution of relaxation times. In analogy with spin glasses, a new ex-
pression is proposed for the analysis of these diagrams, a strophoidal function, which leads to a distribu-
tion function D(6) decreasing for large 6 as 6 ~'** with 0 < a < 1. The most probable relaxation time
Omp of the distribution follows an Arrhenius law with a barrier height close to 950 K.

PACS numbers: 77.22.Gm, 64.60.—i

When Li™ ions are substituted for larger K* ions in
KTaO; crystals they occupy off-center positions, there-
fore inducing an electric dipole moment as well as a non-
spherical elastic quadrupole moment. Owing to the ran-
domness of substitution, the interaction between dipoles is
also random. This includes the usual dipolar interaction
and the indirect coupling due to the soft ferroelectric
mode in this highly polarizable crystal. The combination
of these two types of interaction is expected to lead to
unusual dipole dynamics and, upon cooling, to a phase
transition, the nature of which is still not well understood
[1,2]. In this Letter, we propose a new description of the
dipole dynamics which is believed to play a crucial role in
the transition.

In order to investigate the relaxation of the Li dipoles,
we have performed a systematic study of the complex
dielectric constant ¢=¢' —i¢" and the resulting Argand
diagrams (AD), also called Cole-Cole diagrams, €’ vs €.
The shape of these diagrams clearly reveals the unusual
character of the relaxation which we intend, in contrast
to previous studies [3-8], to explain more precisely. To
this end, we propose a new dielectric susceptibility func-
tion, the form of which was inspired by an analogy with
the magnetic susceptibility of spin glasses. In both cases,
the susceptibility is the response to an external field of an
assembly of identically relaxing dipoles (magnetic or
electric) when the interactions between dipoles are ran-
dom. The eigenmodes of the system may be determined
by diagonalization of the interaction matrix. The corre-
sponding transformation leads to a distribution of relaxa-
tion times for the eigenmodes which, in turn, determines
the form of the dynamic susceptibility [9,10].

The dielectric measurements have been carried out on
two crystals of K| —,Li,TaO3 (KLT) with concentrations
x=1% and 1.5% as a function of the temperature (4
K < T <200 K) and over a broad range of frequency (20
Hz< f<2 MHz) with Hewlett-Packard 4192A im-
pedance analyzer. All the experiments were performed
without any applied static electric field. The 1.5% crystal
has already been studied using Raman scattering [11]
and acoustic propagation [12] (sample I of Ref. [12]).

To keep a consistent labeling scheme in all our publica-
tions we refer to the 1% crystal as sample IV.

The variations of ¢ and ¢" are shown in Fig. 1 as func-
tions of temperature 7T at the frequency 1.6 kHz for the
1.5% sample. The peak in the £ curve near 50 K and the
associated step in the & curve are clear manifestations of
a relaxation process. They are both displaced towards
higher temperatures when the frequency is increased.

Figure 2 represents the AD &" vs ¢ for the two samples.
The most important characteristic shared by these dia-
grams is their asymmetry, in the sense that they have an
infinite slope for high frequencies (left-hand side) and a
finite slope for low frequencies (right-hand side).

The simplest possible AD is a semicircle which depicts
the case of a Debye relaxation that involves a single
discrete relaxation time. Obviously our data can only be
interpreted with the use of a distribution of relaxation
times. Such a situation is often encountered in liquids
and solid materials and numerous distributions have been
used by different authors in order to fit their experimental
results. However, in view of the shape and the AD, our
data cannot be interpreted in terms of known relaxation
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FIG. 1. Real part ¢ and imaginary part ¢’ of the dielectric
constant ¢ as a function of temperature, measured at 1.6 kHz
for the KLT sample 1 (1.5% Li).
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FIG. 2. (a) Argand diagram &" vs &' for sample I (1.5% Li),
deduced from measurements at 7=55 K (circles), with the
log-normal fit (thin curve) and the strophoidal fit (thick curve).
(b) The same as in (a) for sample IV (1% Li), with measure-
ments performed at T=50 K (circles) and at T=58 K (tri-
angles); the solid curves represent the strophoidal fits.

functions. Those proposed by von Wiechert [13] and
Wagner [14] (log-normal), Cole and Cole [15], and
Fuoss and Kirkwood [16] give symmetric curves, unsuit-
able in this case. Those introduced by Davidson and Cole
[17], Havriliak and Negami [18], Kohlrausch [19], and
Williams and Watts [20] must also be discarded since
they lead to curves with a finite slope on the left-hand
side. Nevertheless, it is possible to invert these curves
(exchange of left and right sides) while keeping the low
frequencies on the right and the high frequencies on the
left. This purely mathematical operation has been ap-
plied to the Davidson-Cole relaxation function [21-23],
leading to an AD shape similar to ours. Instead, we
prefer to use another and new relaxation function which
has a physical justification.

In previous dielectric studies on KLT crystals, in spite
of the asymmetric shape of the AD, the relaxation of the
Li dipoles has generally been analyzed using a log-normal
distribution of the relaxation times. The width of the dis-
tribution was then found to increase with decreasing tem-
perature while the characteristic time of the distribution
(defined through the logarithmic average) followed an
Arrhenius law with a barrier height close to 1000 or 1100
K [3,4]. Therefore we have also attempted to fit our data
with a log-normal distribution. As expected, the agree-
ment is rather poor [thin curve in Fig. 2(a)l, but we also
obtain a barrier height of about 1000 K for the jumps of
Li* ions.

In order to account better for the shape of the AD, we
assume the following form (the physical justification of
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FIG. 3. Arrhenius plots of logio(1/7) and logio(1/6mp) (¢
and 6mp in ms) as a function of 100/7 (T in K) for the KLT
sample I. The straight lines correspond to barrier heights equal
to 730 K for 7 and 970 K for Omp.

this choice is given later in the Letter) for the contribu-
tion of the Li dipoles to the complex dielectric constant at
the angular frequency o =2xf:

ew)=A|l1+iot — (iwz)°

1—a
——1——+iw‘r] ] 1)
1—a

In this form which defines the strophoidal relaxation
function [24], a is a dimensionless exponent which may
depend on the temperature. The right-hand side angle
can be shown to equal an/2 (therefore 0 < a < 1), while
the left-hand side angle always equals #z/2. The coeffi-
cient A =¢(0) is the static contribution and 7 is a charac-
teristic time, both of which may also be temperature
dependent. The free parameters A, 7, and a are comput-
ed using the Marquardt method of least squares. There
is an excellent agreement over a broad temperature range
(not shown) between Eq. (1) and the variations of ¢ and
¢" as functions of frequency. This fit is illustrated by the
strophoidal curves in the AD I[full curves in Figs. 2(a)
and 2(b)].

We find that A4 decreases with temperature in a
manner typical of a static susceptibility in a thermally ac-
tivated dipole system. The time 7 follows an Arrhenius
law, with a barrier height equal to 640 and 730 K for the
samples IV and I of concentration 1% and 1.5%, respec-
tively. This is shown in Fig. 3 for sample I. These values
are smaller than previous data. When the temperature is
increased, the exponent a varies from a small value to a
value close to 1. The variations of a with temperature is
given in Fig. 4 for the two samples.
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The normalized distribution D(8) defined as

s D(6)
s(w)=Aj; d@m

depends on a and 7 and is given by

0 for 6<(1—a)t,

a I—a
z Lz for 6=
0 l1—a ?]

—(+a)

D(0) =1 sin(an)

7o

For large values of 6 this function behaves as 6
Since 0 <a <1, all of the moments diverge except the
norm. Hence, it must be characterized by its asymptotic
behavior and its most probable value Oyp=27(1 —a)/
(1+a). The time Omp also follows an Arrhenius law but
the barrier height is somewhat larger than for z: 915 and
970 K for samples IV and I, respectively. The case of
sample I (1.5%) is illustrated in Fig. 3. The decrease of a
implies that the distribution function spreads out more
and more towards the long relaxation times when the
temperature decreases.

The Fourier transform &(z) of the susceptibility e(w),
Eq. (1), is easily calculated; it is expressed in terms of the
hypergeometric function |F;. Since £(¢) is available, it
could readily be checked against the transient response
measurements.

It should be mentioned that the function D(8) given
by Eq. (3) does not tend towards a Dirac distribution
8(6— 1), and therefore a simple Debye relaxation is not
recovered, when the temperature tends towards infinity.
This is due to our choice of Eq. (1) for &(w) which is a
simplified form. Nevertheless, in the temperature range
where we can properly test the function, i.e., where we
have nearly complete AD, the simplified form gives an
excellent agreement. We do have expressions also valid
for high temperatures, but their complexity pushes them
beyond the scope of this Letter.

In proposing the form of &(w), Eq. (1), we have been
guided by a formal analogy with that which has been
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FIG. 4. Temperature dependence of the exponent a for the
KLT samples I (1.5% Li) and IV (1% Li).
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done in [25] for a spin glass for the magnetic susceptibili-
ty x(w) at the critical temperature 7. This is obtained
when applying the Glauber theory [26] to the dynamics
of an assembly of spins. Two fundamental hypotheses
have to be made: (i) The spins are coupled through Ising
interactions; (ii) the interactions are independent cen-
tered Gaussian random variables, all with the same prob-
ability distribution. Consequently, in the thermodynamic
limit, and after some mathematics on infinite random ma-
trices, the distribution of the interaction eigenvalues is
found to be the Wigner law [27]. Then the susceptibility
is easily deduced and for T =T., it reads

2@ =All+iot —VietQ+iwt)]. 4)

This equation is a particular case of Eq. (1) obtained
with @ =, a value which comes from the square root in
the Wigner law. The corresponding AD is a strophoid.
In our calculations we keep the first hypothesis as is
sometimes done [28], but we give up the second one.

As in the Glauber theory, we regard t as a microscopic
relaxation time (i.e., of an individual Li* ion) which
should behave smoothly with temperature, consistent with
our observations. Moreover, since we find that a is
different from + and is temperature dependent, the in-
teractions between the relaxing entities are far from cen-
tered Gaussian random variables. This feature may be
interpreted as the occurrence of effective, temperature-
dependent interactions [2] between Li dipoles.

In conclusion, we have interpreted the peculiar shape
of the AD of the dielectric constant of K;—,Li,TaO;
crystals in terms of a new susceptibility function. This
function is associated with a long-tailed distribution of re-
laxation times which decays as 6 ~ ¢+ at large 6. The
time v which characterizes the distribution and its most
probable value 6y, follow Arrhenius laws with activation
energies close to 700 and 950 K, respectively, that in-
crease slightly with the concentration x. However, our
most striking result concerns the strong influence of the
interactions on the distribution D(8) even for Li concen-
trations as low as 1%.
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