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New Scaling Form for the Collapsed Polymer Phase
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By studying the finite length scaling of a self-interacting partially directed self-avoiding walk we have
verified a new scaling form for the collapsed phase of self-avoiding-walk problems. We suggest therefore

that this should hold in polymer systems.
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Many different approaches have been applied to the
study of polymeric solutions. The properties of an isolat-
ed polymer chain are of significant importance here and
lattice statistical mechanics has provided one model based
upon self-avoiding walks with nearest-neighbor mono-
mer-monomer interactions (ISAW) that has been widely
studied in this context [1,2]. In the physical dimensions d
of two and three, this model demonstrates three different
behaviors or phases. At high temperatures the self-
avoidance constraint causes effective excluded volume in-
teractions which favor extended (over the average purely
random walk) configurations. There exists a critical
point which is believed to model the 6 point of polymer
systems and at low temperatures a collapsed phase dom-
inated by globulelike configurations persists. The radius
of gyration Rg(L) describing the average size of con-
figurations as a function of the walk length L behaves as

Rg~ALY )

with v taking on different values in the three phases and
in different dimensions. In particular, in the collapsed
phase it has been fairly well established that the con-
figurations are compact and v=1/d. The study of the
ISAW model has been focused on the infinite tempera-
ture or free SAW and the 6 point where dy=1/v, the
fractal dimension of the objects, takes on nontrivial
values.

The asymptotic behavior of the partition function for
ISAWs at high and 6 temperatures has been assumed to
take on the following form:

Qu~qou"L7™", 2

where Inu(T) is proportional to the temperature-
dependent free energy, and which has been conjectured as
applying to real polymer chains [3,4]. The meaning of y
in the collapsed phase has been questioned recently [1].
The above form for the partition function implies that the
large L corrections to the free energy are logarithmic. It
would seem natural to ask whether a surface tension term
may be appropriate at low temperatures when the poly-
mer is in a compact configuration. Hence, we conjecture

Qr~qopbutLr! (3)

as a likely form for the partition function in the collapsed

phase of ISAWSs. Here Inu (7T) is proportional to a
temperature-dependent surface free energy while o is a
constant which should be close to ¥ in two dimensions
and close to % in three since the surface of a compact
object in d dimensions is d —1 and o would then be
(d—1)/d. 1t is not clear, however, whether the self-
avoidance constraint may not lead to a smaller value of o,
that is the fractal dimension of the “‘surface” is lowered.
The above form should hold for dilute polymer systems in
a poor solvent or at a low temperature including chains,
rings, and branched molecules.

The above form has historical precedent in the cluster
partition functions that occur in the droplet model of con-
densation. Some time ago Fisher and Felderhof [5,6]
developed a theory of condensation in an attempt to un-
derstand the low-temperature behavior of a fluid system
that undergoes a first-order transition. This involved con-
sidering the partition function for clusters of molecules
separately. One might consider, rather intuitively, the
clustering of molecules in a fluid system as analogous to
the collapsing of polymer systems. This analogy is most
simply contemplated by considering site animals, which
are models for branched polymers together with, say, Is-
ing model clusters. Then the collapsed phase of the
ISAW model is clearly a candidate for the existence of
this extra correction term. Such a perimeter term has
also been introduced in a study of compact self-avoiding
circuits in strips [7].

Further evidence for the scaling form (3) comes from
the study of Hamiltonian walks on the Manhattan lattice
[8], where a perimeter term and a y exponent occur and
the connection to dense SAWs is discussed. However, the
work on Hamiltonian walks involves fixed geometries of
the boundary. This introduces anomalies into the
enumeration problem [9] and effects the value of y [8].
Moreover, these modes are noninteracting and are be-
lieved to represent the 7 =0 limit of collapsed polymers.
In contrast to this, the y in (3) represents an exponent
which arises naturally from an average over all config-
urations at finite, nonzero temperature, and, therefore,
over all boundary geometries. There also exist simple site
animal problems [10] and a special subset of walks,
known as spiraling [11], in two dimensions where the
form of the partition function contains only the u(7)
term (with o=1%); these problems are noninteracting,
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FIG. 1. Estimates for the exponent o plotted against a suit-
able scaling variable for a range of temperatures, found from
the calculated partition function. The temperatures are, from
top to bottom, 7/T.=0.29, 0.34, 0.41, 0.50, 0.61, 0.72, and
0.825. These estimates do not take into account the logarithmic
correction of the y term.

however.

To study the validity of this conjecture we have exam-
ined a system of partially directed interacting SAWs in
two dimensions and computed series up to walks of length
6000. We have found strong evidence for the existence of
o and a value very close to 3 (see Fig. 1). We have also
identified the low temperature value of y to be approxi-
mately 1. The partition function was calculated over a
range of fixed temperatures and the form (3) was com-
pared to the result. First, assuming the existence of only
o and not necessarily y gives 0=0.498 £ 0.003 over the
range of temperatures in Fig. 1 (we have avoided the crit-
ical and zero temperature regions for the usual reasons).
Next, given the complete form (3) and assuming a value
of o equal to T, a stable value of u;(T) <1 could be
found between 7 and 10 figure accuracy depending on the
temperature. Also, a convergent value of y — 1 was found
for each temperature (see Fig. 2) and this is a constant
(—0.7500) within 0.02%. With the most sophisticated fit
(taking account of higher terms in a conjectured expan-
sion of the free energy) a higher accuracy is achieved
with y=0.250000 * 0.000005 being able to be inferred.
(A longer account of this work will be included in a com-
plete study of the finite length scaling of this model [12].)
We point out that while an exact solution for the generat-
ing function has been found in the generalized canonical
ensemble [13,14], the standard connection between the
generalized and canonical ensemble breaks down at low
temperatures [15] and this is the reason for the necessity
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FIG. 2. Estimates for the exponent y—1 fitting the calculat-
ed partition function by the full form (3). Again these cover
the same range of temperatures as in Fig. 1, from top to bottom
(on the left-hand side). Fitting these curves with third- and

fourth-order polynomials in / ~'2 produces remarkably stable
results.

of enumerations. It would be interesting in this context
to further examine these conditions in an attempt to ex-
tend them. The interacting partially directed SAW mod-
el is a variant of the ISAW model that allows only steps
in the positive x direction. This model seems to possess
all the richness of the full model and it would be of great
interest to see whether the exponent o exists for interact-
ing self-avoiding walks and whether its value is indeed .

The introduction of p;(T) allows the definition of
another critical point exponent y since u;(7T) approaches
1 as the temperature is increased towards the 6 point.
That is,

[1 = (D) ~|T—T.|*. (4)

In the Fisher droplet model this exponent is always 1.
Our enumerations and (tri)critical scaling theory [16]
give a value of % for this exponent implying a nontrivial
extension of the Fisher model to tricritical points.

In conclusion, the interacting partially directed SAW
model has been studied at low temperatures by means of
extremely long series and provides good evidence for a
scaling form similar to the one Fisher used to describe the
essential singularity of a first-order transition. The in-
teracting partially directed SAW system hence gives a
realization of the droplet model. Moreover, it is reason-
able to conjecture that the form (3) should be valid in the
collapsed phase of ISAWs and for dilute polymer solu-
tions at low temperatures which they model. The new
correction term can be understood as a surface energy
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contribution to the asymptotic free energy. We hope this
conjecture will stimulate field theoretic and other
methods of analysis to investigate the collapsed phase of
ISAWs.
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