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Transverse Phase-Space Dynamics of Mismatched Charged-Particle Beams
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The transverse dynamics of a nonrelativistic, mismatched charged-particle beam propagating
through a continuous, linear focusing channel is calculated using the Fokker-Planck equation to
represent the evolution of a coarse-grained distribution function in the phase space of a single beam
particle. The relaxation rate and diffusion coefficient are determined from a simple model of tur-
bulence resulting from charge redistribution. The solution for the distribution function enables
calculation of all transverse beam properties as a function of time, including the halo.

PACS numbers: 41.85.Ja, 29.27.Bd, 41.75.—i, 52.35.Ra

This paper concerns the dynamics of transverse emit-
tance growth and halo formation in nonrelativistic space-
eharge-dominated beams propagating through continu-
ous, linear focusing channels. Mismatches in the density
profile and beam size contribute to ernittance growth [1,
2]. A mismatched beam carries excess energy which can
be thermalized if nonlinear forces, instabilities, and/or
collisions are present. Thermalization generates emit-
tance growth, the magnitude of which can be calculated
from the excess energy [2]. It also ejects beam particles
into high-amplitude orbits, thereby generating a halo.
These efI'ects are detrimental to many advanced accel-
erator applications. For example, applications requiring
ion beams with high current and low emittance include
linear accelerators for heavy-ion-ignited inertial fusion.
Applications requiring minimal transverse halo include
linear accelerators envisioned for long-term, continuous-
wave operation, in which impingement of beam particles
on the accelerating structures may generate radioactiva-
tion, thereby inhibiting routine maintenance. Conven-
tional design philosophies relying exclusively on control-
ling root-mean-square (rms) properties of the beam are
insufFicient for these accelerators.

Charge redistribution begins when the beam enters the
focusing channel. In a zero-temperature beam, particle
trajectories initially do not cross, and laminar flow is
present. However, if the initial density gradually falls
to zero at the beam edge, then laminar flow ceases very
quickly, at about one-quarter of a plasma period after in-

jection, at which time particle trajectories originating in
that part of the beam with the lowest initial density will
cross [3]. Laminar flow terminates with nonlinearities in
the form of discontinuous shocklike behavior associated
with wave breaking in phase space and the onset of irre-
versible dynamics [3, 4]. Charge redistribution in a warm
beam terminates similarly [3].

While the charge-redistribution phase permits simple
analysis, subsequent evolution is more complicated. Un-
derstanding this evolution is essential because it domi-
nates almost the entire transport of real beams. Prior
investigators approached this problem using both direct
experimentation [5, 6] and computational N body simu--
lation [1,7, 8]. The purpose of this paper is to identify the

essential underlying physics and integrate it into a single
formalism accounting for the salient dynamical features
discovered in prior investigations.

We select an arbitrary beam cross section and discuss
its evolution from the perspective of a comoving frame.
During charge redistribution, the beam evolves toward
a density profil which is nearly uniform, particularly if
space charge is strong. If this nearly uniform beam is
mismatched in size to the transport channel, it carries
free energy available for thermalization. The shocklike
behavior and wave breaking in phase space ending this
phase are nonlinear phenomena which may strongly ex-
cite random collective degrees of freedom, thereby estab-
lishing turbulence. Coupling between beam particles and
the turbulence provides a mechanism for converting free
energy, now contained in the turbulent fluctuations, into
heat. In strong turbulence the heating will occur very
rapidly, on a time scale of the order of a plasma period
[9]. Because it occurs at the expense of the energy con-
tained in the turbulent fluctuations, the turbulence also
weakens on the same time scale.

Beam particles slow down by interacting with turbu-
lent fluctuations of the net electric field. This anomalous
resistivity also occurs on a time scale of the order of a
plasma period in strong turbulence. In three-dimensional
beams, the associated average collision frequency is theng—:nAD times larger than in a quiescent plasma,
where n is the particle density and A~ is the Debye length
[9]. In space-charge-dominated beams g

i is large and
these interactions are important. In weak turbulence the
average collision frequency is g ~ times smaller than
in strong turbulence.

Interactions with turbulent fluctuations are considered
to impart white noise on particle trajectories, thereby es-
tablishing a MarkofI' process resulting in Brownian mo-
tion. The interactions create dynamical friction and dif-
fusion, causing relaxation to occur on a time scale which
evolves from short to long as the turbulence dissipates.
Heating and relaxation of the beam eject a fraction of
the particles into large-amplitude orbits causing the emit-
tance to grow and a transverse halo to form. Because the
relaxation time can be very short, these processes can
occur during beam transport. Therefore, even though

932 1993 The American Physical Society



VOLUME 70, NUMBER 7 PH YSICAL REVI EW LETTERS 15 FEBRUARY 1993

from the perspective of discrete-particle interactions the
beam may be regarded as collisionless during transport,
collective interactions established by turbulence cause ef-
fects similar to collisions in that they tend to smear the
particles in phase space, destroying ordered motion and
establishing a thermal velocity distribution. Phase space
becomes covered in a coarse-grained manner [10], and the
dynamics may therefore be represented with a coarse-
grained distribution function of particles in the phase
space of a single particle.

These considerations motivate using the Fokker-Planck
equation to govern the coarse-grained distribution func-
tion. We let W(x, u, t; xp, up) denote the coarse-grained
probability of finding a particle with position x. and ve-
locity u in the range (x, x+ dx) and (u, u+ du), respec-
tively, at time t given it started at (xp, up) at t = 0. The
Fokker-Planck equation is

B,W+ u V' W+ K V'„W= PV'„(Wu)+ DV'„W, (1)

K = —qm V' (C)y+ C', ), (2)

where q is the particle charge. According to Poisson's
equation, the mean space-charge potential C, is deter-
mined from the smoothed-out density, which in turn is
determined from the coarse-grained probability:

where K is the net force per particle mass m, P is the re-
laxation rate, and D is the diffusion coefBcient. Both the
probability and the net force are regarded to be smoothed
out. The effects of turbulent Huctuations about the mean
electric field, dynamical friction and diffusion, are rep-
resented by the Fokker-Planck collision operator on the
right-hand side of Eq. (1). Though the beam is gener-
ally out of equilibrium, we define and use a "tempera-
ture" T = mD/Pk, where k is Boltzmann's constant.
In equilibrium this relationship gives the true thermody-
namic temperature. The net force in the comoving frame
is the superposition of the focusing force and the mean
space-charge force found from the potentials Cf and C„
respectively, and thus

')7 C, (x, t) =—
E'p

du dup dxp W(x, u, t; xp, up) W(xp, up)

where A' is a normalization parameter related to the par-
ticle density in the beam, zp is the permittivity of free
space, and W(xp, up) is the single-particle distribution
function at t = 0.

The relaxation rate and diffusion coeKcient with its
associated temperature will generally depend on both po-
sition and time. However, if turbulence is initially strong
enough to induce rapid heating and relaxation, and if
most beam particles interact with the strong Huctuations
as they orbit, then to a reasonable approximation the
beam may be regarded to have a uniform, decreasing
relaxation rate and a uniform, increasing temperature
which saturates as turbulence weakens. Letting P, de-
note the relaxation rate in strong turbulence, we adopt
an exponential model of turbulent heating:

T(t) =T +(Tp —T )e t".
Starting from temperature Tp, the beam strives to reach
a Maxwell-Boltzmann distribution with temperature T

To obtain a self-consistent solution, one must solve
Eqs. (1)—(3) simultaneously using Eq. (4) to represent
turbulent heating. For mathematical simplicity we treat
a one-dimensional (1D) rms-mismatched sheet beam cen-
tered on the focusing-channel axis which provides a fo-
cusing force —m~ x. Because the charge-redistribution
phase lasts for a very short time, we ignore its de-
tailed dynamics and regard the turbulence resulting from

charge redistribution to be present at t = 0, the time
of injection of the beam into the focusing channel. Our
treatment may be straightforwardly generalized to higher
dimensions, and the qualitative features of the results in
the presence of turbulence should be insensitive to the
dimensionality. However, the onset of turbulence may
depend strongly on the dimensionality, an effect which
has been observed in some numerical simulations [11].
This circumstance may be analogous to the sensitivity of
phase transitions to dimensionality.

Assuming P (( P, to be a constant relaxation rate in
weak residual turbulence, and using a harmonic-oscillator
model of the particle orbits, we can solve Eq. (1) in closed
form with standard methods [12]. We take —ma x to be
the net restoring force, where ~„ is the particles' orbital
frequency. This replaces Poisson's equation, and thus
self-consistency is sacrificed. However, the approach is
instructive because it provides simple results exhibiting
many of the prominent features of self-consistent solu-
tions discussed below. Moreover, the resulting distribu-
tion function can be used to calculate any moment of x
and u in terms of elementary functions.

Following Ref. [12], we express the solution of the
Fokker-Planck equation in terms of the variables (
(prx —u)e "', rl = (p2x —u)e ""and their initial val-
ues (p, rjp, in which y, r = —(P —Pr)/2, p2 = —(P+Pr)/2,
and Pr = (P2 —4w2)r~2. The solution which tends to
6(( —(p) h(rl —qp) as t ~ 0 is

m e~' m
[o(( —(o)' + &h(( —(o)(n —no) + tin —no)'I ) ,
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where a, 6, and h are dimensionless functions of time found by integrating 2PT/Tp multiplied by e 2"'~, e 2"'~, or
—e !~'+~'l~, respectively, over the interval [O, t], and 6 = ab —h2. These functions are easily evaluated from the
model of turbulent heating, Eq. (4).

The coarse-grained probability function given in Eq. (5) can be used to calculate the density function governing
the average spatial distribution of the particles and any other smoothed-out moment of 2:, u in terms of elementary
functions. Two moments of special interest are the rms beam size X = (x ) ~ and rms emittance e = ((x2)(u2)—
(xu)2) r~2. If the beam enters the accelerator with a Maxwellian velocity distribution, these quantities, normalized to
their values at t = 0, are respectively found to be

X e r'~'
2 — 4 2 2 2 2 1/2(e~' 0 (a+ 1) + pz + e ~' 0 (6+ 1) + pr + 2 A (6 —1) —w„)

p 1
(6)

O'6 + a(A'+ p', ) + b(A'+ p22) + 2h(A'+ ~2) + P,'
1

W(x, u, t) = PpQp ) ) c„P
m=0 n=O

(8)

in which c„are time-dependent coefficients. By sym-
metry, the coeKcients c for which m + n is odd are
zero for a centered beam. The leading term of the dis-
tribution function is Gaussian in both velocity space and

configuration space. This is advantageous because lab-
oratory beams injected into focusing channels may have
properties close to these, and so the initial conditions are

where 0 = cu„Tpe~/T~cp, T~/Tp = (Xpe~/X~6'p)
and Xo, eo, A, e refer to t = 0 and t ~ oo, respec-
tively. The degree of mismatch determines the ratios
X /Xp and e /tp [2]. Example plots of X and e in the
limit of instantaneous heating appear in Fig. 1(a). In this
model, the rise time of the emittance corresponds to the
relaxation rate P of residual, weak turbulence, even with
instantaneous heating from initially strong turbulence.

We now solve Eqs. (1)—(3) self-consistently by decom-
posing the single-particle distribution function into com-
plete sets of orthonormal polynomials [13]. For the 1D
sheet beam a natural choice is the set of orthonormal
Hermite functions P~(v Ax) and Q„(~o.u), where A =
m~p/2kT, cup is a reference frequency, and o. = m/2kT.
This allows us to express the distribution function in a
form which is an eigenfunction of the Fokker-Planck col-
lision operator:

easy to incorporate. Moreover, this is the equilibrium
distribution for a relaxed beam with zero space-charge
force in a linear focusing channel, so Eq. (8) includes a
good foundation on which to build the efFects of nonlinear
space-charge forces.

The coarse-grained particle density, beam size, and
emittance are respectively given by

n = JVPp ) cp"P2„,
p=O

X/Xp = [(T/Tp)(l + ~2c2p)]r~2, (1O)

&/Ep = (T/Tp) [(1+&2cp)(1+ v2c2) —(cr) ]
~ . (11)

Integrating n over all values of x must always yield JV;
consequently, we must have c& ——j. for all t. The turbu-
lence is expected to pass rapidly from strong to weak, so
we use Eq. (4) for turbulent heating and, as before, we let

P (( P, be a constant in Eq. (1) to represent persistent
weak turbulence.

Upon substituting for W(x, u, t) in Eqs. (1)—(3) and
using the orthonorrnality and recurrence relations of P~
and gg, we obtain the following infinite system of cou-
pled differential equations for the coefficients cm which
is equivalent to the coupled Fokker-Planck and Poisson
equations:

c = (T/2T) gm(m ——1) c™+ gn(n —1) c 2+ (m+ n) c —n(P/cup) c

+ ~m (~nc„r + gn+ 1c„++r ) —(w /up) ~n (~mc„r + v m+ 1c„+r )

+ (~„/~p) (Tp/T) ~ /2n ) c„rK~

q=O

(12)

where the dot denotes differentiation with respect to ( = ~pt, ~~ = (JVq ~p/2epgvrmkTp) ~ is the plasma frequency,
and

2„I'[n+ (q —p)/2] I'[1 —n+ (q+ p)/2] I' [n —(q —p)/2]
~+27rp! q!(2n)!
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FIG. 1. rms beam size and emittance, normalized to ini-
tial values, (a) from harmonic-oscillator model of particle
orbits with (a„/~o) = 1.5, P = 0.015, X /Xo = 2.4,

/eo = 4.8 in the limit P, ~ oo; (b) calculated self-
consistently with (u/ceo) = 1.5, (w„/wp) = 1.4, P, /cup = 1.0,
P/~p = 0.015, and T /Tp = 4.

Upon truncating at m = M, n = N, the system can be
integrated numerically. We set M = 4, N = 3 to allow for
two time-dependent coefficients c2&, co4in Eq. (9) for the
density. This is sufficient to illustrate the physics; how-
ever, numerical accuracy can be improved as desired by
continuously increasing M, N until essentially no change
is seen in the results. The truncated system is solved for
a beam entering the focusing channel with a Maxwellian
velocity distribution and a Gaussian density profile of
standard deviations (kTo/m) ~/ and (kTo/mwo) ~/, re-
spectively. The initial conditions are c„=6

Example plots of X and e in a self-consistent calcula-
tion appear in Fig. 1(b). The parameters were chosen
to be consistent with those of Fig. 1(a) representing the
analytic solution. Though their details differ, the qual-
itative features of the two solutions are similar. In par-
ticular the relaxation rate P determines the rise time of
the emittance. The self-consistent solution was verified
to give the same results for the rms quantities as the an-
alytic solution in the limit of zero space charge (a& ——0,
w„= w); thus, differences between the curves in Fig. 1
are attributed to the space-charge force.

As the beam relaxes, more and more particles are
ejected into high-amplitude orbits. The spreading den-
sity profile may generate excessive radioactivation if the
transport elements have small bore-hole apertures. Since
growth in beam size and emittance correlates to degree
of mismatch, the cure involves both reducing sources of
mismatch and increasing the bore-hole sizes.

We based our calculations on a simple model of tur-
bulence which was assumed to be strong initially, caus-
ing rapid heating of the beam, and to dissipate quickly
to persistent weak turbulence. The relaxation rate was
taken to be a constant associated with weak turbulence
and was regarded as a free parameter. Since the spec-
trum of electric-field fluctuations determines the relax-
ation rate and diffusion coefficient, it would be inter-
esting to use N-body simulations to relate the onset of
turbulence and the time dependence of the fluctuation
spectrum to accelerator design parameters. These stud-
ies may lead to more accurate Fokker-Planck coefficients
for use in the semianalytic formulation.

Though we considered a sheet beam in a constant fo-
cusing force, the formalism can be adapted to higher-
dimensional beams and nonstationary focusing forces.
It can also be used to explain and describe the recur-
rence and gradual dissipation of fine structure present in
the beam at injection, a dynamical phenomenon seen in
transport experiments and numerical simulations [5, 6].
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