
VOLUME 70, NUMBER 7 PH YSICAL REVIEW LETTERS 15 FEBRUARY 1993

Driving Operators Relevant: A Feature of the Chem-Simons Interaction
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By computing anomalous dimensions of gauge invariant composite operators (@@)"and (&P'P)"
in matter —Chem-Simons models, we address the fact that the Chem-Simons interactions make these
operators more relevant, or less irrelevant, in the low energy region. We suggest a critical Chern-
Simons fermion coupling, 1/K, = 6/19, for a phase transition at which the leading irrelevant operator
(g@) becomes marginal, and a critical Chem-Simons boson coupling, 1/K, = 6/34, for a similar
phase transition for the leading irrelevant operator (P*P) . We see the phenomenon also in the 1/N
expansion.

PACS numbers: 11.15.Bt, 11.15.Pg

One of the remarkable features of matter —Chern-
Simons gauge theories [1] is that the Chem-Sirnons in-
teractions attach statistical flux tubes to particles, by
which a fermion can be transmuted into a boson or an
anyon (and vice versa), depending on the strength of the
Chem-Simons coupling, 1/r (K the statistical parameter)
[2]. In the relativistic quantum field theory scheme, an
Abelian Chem-Simons term receives no correction from
massive matter beyond one loop [3, 4], and receives only
finite corrections from massless matter starting from two
loops [4, 5]. This results in an identically vanishing beta
function for Chem-Simons couplings. The insensitivity
of Chem-Simons couplings to energy scales is attributed
to the topological nature of Chem-Simons actions. How-
ever, it does not imply a triviality of the whole theory
in the sense of renormalization. In fact, as shown in

[6], matter fields in Chem-Simons models do need infi-
nite renormalization and receive anomalous dimensions.
(A non-Abelian Chem-Simons field receives an anoma-
lous dimension through interaction with matter as well

[6], while the Chem-Simons coefficient keeps finite and
quantized, as required by the "large" gauge symmetry. )
This observation leads naturally to a conjecture that
the asymptotic behavior of gauge invariant operators in
a matter —Chem-Simons theory is nontrivial. Recently,
matter —Chem-Simons models have been used in describ-
ing the phase transition between quantum Hall states and
insulators in [7) and [8), where among other observations
is the fact that the composite mass operators of matter
fields receive as well an anomalous dimension, and there-
fore the critical exponents g and v are both dependent on
Chem-Simons couplings. In the present Letter, we ad-
dress another feature of matter —Chem-Simons systems:
namely, that the effect of the Chem-Simons coupling on
the anomalous dimensions of gauge invariant composite
matter operators is to drive these operators in the direc-
tion of increased relevance.

By dimensional analysis, not many operators in a
matter —Chem-Simons model are relevant. For instance,
the Euclidean action of a Chem-Simons fermion model,
if it contains the relevant and marginal operators only,
reads

S = d x] g p clQ+imQ@ —t@p Ag

+i e's A, B1AA, ].

The Chem-Simons field can be normalized so that r is
dimensionless. In particular, the fermion self-interactions
(Qg)", for n & 2, in three spacetime dimensions are ir-
relevant [9]. On the other hand, these operators, as ex-
pected, may receive an anomalous dimension in quanti-
zation. If this is the case, the signs of the anomalous
dimensions become crucial to the asymptotic behavior of
the operators. YVe shall see below that the anomalous
dimensions of these composite operators are dependent
on the Chem-Simons coupling and are negative. Namely,
due to the Chem-Simons interaction, they become less
irrelevant. Moreover, our calculation suggests a phase
transition with a critical effective coupling

1/K, = 6/19, (2)

at which the leading irrelevant operator (gg)2 becomes
marginal. The critical value in (2) shows that if such a
phase transition would occur, it occurs only in a region
with a rather strong Chem-Simons interaction. %'e make
several remarks at this point. First, it is not diKcult to
check that, at the order 1/Ks, all associated Feynrnan
diagrams are finite (in the regularization by dimensional
reduction), and the next to leading contribution to the
anomalous dimensions are of the order 1/K (four and
higher loops). According to (2), therefore, there exists a
multiplicative factor 1/r4 1/10 in the next order. If
the numerical coefFicient of the next order would be com-
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parable to (or smaller than) that of the leading order,
the loop expansion near the transition point is, to some
extent, acceptable. Second, once a phase transition like
this happens, a four-fermion operator, now marginal or
relevant, is switched on to the system. In turn, this four-
fermion self-interaction develops a positive anomalous di-
mension that has the potential to make the operator ir-
relevant. As a combining effect of the Chem-Simons-
fermion and four-fermion interactions, a balance would
be reached somewhere near the Gaussian fixed point for
the four-fermion interaction [10]. Finally, a bare four-
fermion interaction in three dimensions has a coupling
constant that carries a negative dimension of mass and
this makes the operator nonrenormalizable. However,
once the Chem-Simons interaction turns the operator
marginally relevant, the effective coupling of the four-
fermion interaction has zero or a positive dimension and
therefore the four-fermion operator becomes renormaliz-
able or super-renormalizable.

We also conduct a parallel discussion for the Chern-
Simons boson model. %'e shall see that the composite
operators (gag)" gain anomalous dimensions which are
also dependent on the Chem-Simons coupling and are
negative. To drive the leading irrelevant operator (&P*P)
marginal, the Chem-Simons coupling must not be weaker
than

1/K = 3/17.

In the bosonic case, the operators gq(P*P) 2 and gs(P*P) s

are relevant and marginal, respectively. If one perturbs
the theory near the Gaussian fixed point g2 —g3 —0, the
self-interactions can be turned off. On the other hand,
if a perturbation is performed near the infrared fixed
points of the self-interactions g2(P*P) and/or gs(P*P)
these are the driving forces and cannot be ignored. The
self-interaction (P*P), for example, at the infrared fixed
point may be so strong that it makes itself irrelevant.
A sufficiently strong Chem-Simons interaction may pos-
sibly draw it back and the corresponding infrared fixed
point may be significantly shifted.

Other interesting cases are systems that involve N
species of matters with some symmetry, O(N), for in-
stance. A plausible expansion in this case is over 1/N.
We shall see the same phenomenon in this expansion at
order 1/N, before concluding the Letter.

Now we turn to renormalization. Though, in a pro-
cedure of renormalization, one normally deals with the
ultraviolet divergences, the resulting (ultraviolet) finite
effective theory takes a form that is equally good in ex-
hibiting the asymptotic behavior of the theory in both
high and low energy limits. Let us take a simple exam-
ple. After renormalization, the two-point function of the
fermion in the momentum space has an asymptotic form

where p is a reference mass parameter and pq the anoma-
lous dimension of the fermion field. In the Chem-Simons
fermion model, py

———3„, ( 0, at the lowest nontrivial
order and in the Landau gauge [6]. This implies that the
fermion field in the Chem-Simons quantum field theory
has a dimension less than its engineering one. More-
over, the kinetic term gp Bg takes an asymptotic form

2

(Q)~~. Now we see the kinetic energy of the fermion in
t0e Chem-Simons theory is relevant, instead of marginal,
in the lower energy region.

To renormalize the action (1), only one nontrivial
renormalization constant suKces. This is because Z~ ——1
can always be chosen, as the Abelian gauge field A needs
no infinite renormalization, and Z@ = Z&&&&&, due to the
gauge symmetry. The fermion wave-function renormal-
ization constant, to the lowest nontrivial order, in the
Landau gauge, and under the minimal subtraction, is [6]

1 1ZQ: 1+
3K

(4)

FIG. 1. Nontrivial Feynman diagrams for I & at order
1/K in the fermion model. Solid lines stand for the fermion
propagator; dashed lines the Chem-Simons propagator; and
dark spots the operator 0 =, , (@g)" with 2(n —1) ex-
ternal fermion lines omitted. There is a symmetric factor of
2 for each of the last three diagrams.

with e = 3 —w —+ 0. Now we consider the composite
operators of interest. For simplicity, we shall set matter
masses zero (m = 0). This will not change the ultra-
violet divergence structure of the model. We use the
Landau gauge for convenience, the results must be inde-
pendent of a gauge choice as the operators we are dealing
with are gauge invariant. The regularization by dimen-
sional reduction, as used in [6, 8], will be used here. The
same results have been reproduced by a regularization
with a naive cutoff, which provides a check of consis-
tency. To calculate the renormalization of a composite
operator 0„= i,l, (Qg)" for a given n, we construct
a one-particle irreducible (1PI) composite vertex I'20"

which contains the operator 0 as a vertex and has n
truncated external fermion and n antifermion (and null
Chem-Simons) lines. The nontrivial Feynman diagrams
at the lowest nontrivial order (two loops) are depicted in
Fig. l.

By power counting, the composite vertex I'0" is di-
mensionless. The calculation is somewhat tedious but
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2n+ 15 1
(7)

2n+ 15
(M0)" + &(44)" (8)

It is worth noting a simplification appears here. As shown
in the renormalization relation (6), in its general form,
there may exist operator mixing in renormalization of
higher dimensional operators. The operator mixing, if
it happens, will make the situation much more compli-
cated. However, operator mixing does not appear in the
renormalization of the class of operators (Qg)" of the
Chem-Simons fermion model [nor in that of (P*P) of
the Chem-Simons boson model, as we shall see below].
This is because the only primary divergence brought in
by the operator (gg)" for a given n is that in (5), and
therefore any cutofF dependence associated with the ver-
tex O„can be resolved by one of the counterterms in a
form given in (7). We have calculated the composite ver-

tex I'&, and confirmed that there is indeed no need2(n, —1)

for any new counterterm —the one given in (7) suffices

to resolve it—though the composite vertex I"& is of2(n —1) ~

dimension two and presumably had various divergences.
In the Chem-Simons boson model, the composite op-

erators under consideration are 0„= („,), (P*P)", which
have an engineering dimension n. To perform the renor-
malization and therefore to calculate their anomalous di-
mensions, we consider similarly the composite vertex I"&"
with the operator O„and n external charged boson and
n anticharged boson lines. Life here seems easier as, at
the lowest nontrivial order, there is only one nontrivial
diagram, as shown in Fig. 2, for I'o" .

Calculating Fig. 2, we obtain

11 1 1 1 p'
0, p; —

~

= 1 + ——+ —in —+ Rnite) .
e) r e 2 p

Finally, we have the renormalization constant and scaling
dimension of (P*P)"

7n+6 1
Z(pe p}n, 6K2

7n+ 6
G(p~p)n: n + Q(p~@)n, = n-

6v2

(1O)

straightforward. The result turns out to be

1 5 1 1 p2
I'ci" O, p; — = 1+ —+ —ln —+ finite [,

2K e 2 p

where, without loss of generality, we have set all external
rnomenta but one (carried by a fermion-antifermion pair)
to zero. Using the renormalization relation

(i"a",)~(i) = &g( —)(&o);i(-,)i'a", (i; —, l

and the fermion wave-function renormalization constant
(4), we obtain the renormalization constant and scaling
dimension for the operator (Qg)",

I
I

I I
I I

I I
I I

I I

FIG. 2. The only nontrivial Feynman diagram for I &" at
order I/r. in the boson model. Solid lines stand for the boson
propagator; dashed lines the Chem-Simons propagator; and
the dark spot the operator 0„= (,~, (P'P)" with &(n —1)
external boson lines omitted. There is a symmetric factor of
2 for the diagram.

To get these, we have used the boson model version of the
renormalization relation (6) and the boson wave-function
renormalization constant Zy = 1+ s„,( —,) [6].

To conclude this Letter, we discuss the expansion in a
controlling parameter N, assuming there are K species of
matter fields which obey a global symmetry O(N). We
take the fermion model as an example, and to generalize
to the boson model is straightforward. As is known, the
one-loop fermion bubble chain is at the same I/Ko or-
der with the bare Chem-Simons propagator, instead of
the bare one, one must use a dressed gauge propagator
that sums over the one-fermion-loop chains, The dressed
gauge propagator in the Landau gauge takes the form
(equivalent in both the fermion and boson models)

ppvp2 pppv ~pv ApA
6& (p) =A +B

p3 p2

640
6402 + ~2'

SvrO

64E92 + ~2 '

where I/O is the effective Chem-Simons coupling. The
fermion wave-function renormalization constant at order
I/N and in the Landau gauge is [8]

16 1
Zg. —1 +

3~(i(64ii2 + m2)N (e ) ' (14)

At order I/N, the nontrivial diagrams for the composite
verte~ I &" with the composite operator („,), (Q, Q, )" are

given in Fig. 3. Calculating the diagrams in Fig. 3, and

FIG. 3. Nontrivial Feynman diagram of I'o" at order I/N
Real lines stand for the fermion propagator; double dashed
lines the dressed gauge propagator; and dark spots the oper-
ator 0„= ', , (@,g, )" with 2(n —1) e~ternal lines omitted.
There is a symmetric factor of 2 for the diagram (b).
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Now we see the anomalous dimensions of (QQ)" are neg-
ative and therefore these operators are more relevant (for
n = 1) or less irrelevant (for n & 2), only if the Chern-
Simons coupling is not unreasonably strong, not stronger
than 1/0 15 for n = 2, for instance.
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