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We present a new type of cluster algorithm that strongly reduces critical slowing down in simula-
tions of vertex models. Since the clusters are closed paths of bonds, we call it the loop algorithm. The
basic steps in constructing a cluster are the breakup and the freezing of vertices. We concentrate on
the case of the F model, which is a subset of the six-vertex model exhibiting a Kosterlitz-Thouless
transition. The loop algorithm is also applicable to simulations of other vertex models and of one-
and two-dimensional quantum spin systems.
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Cluster algorithms [1,2] are one of the few known ways
to overcome critical slowing down in Monte Carlo simu-
lations. Starting with [3] and continuing with new ideas
like [4] and [5], most of the successful algorithms have
dealt with spin systems with two-spin interactions (see,
however, [6]).

In vertex models [7, 8] the dynamical variables are lo-
calized on bonds, and the interaction is between all bonds
meeting at a vertex. Furthermore, there are constraints
on the possible bond variable values around a vertex.

In this paper we present the loop algorithm, a new
type of cluster algorithm applicable to vertex models.
For usual spin systems most cluster algorithms start by
"freezing" (also called "activating") or "deleting" bonds.
Clusters are then sets of sites connected by frozen bonds.
In the case of vertex models our idea is to define clusters
as closed path, s of bonds ("loops" ). To construct such
clusters, we have to perform operations at vertices that
generalize the freeze-delete procedure. In this context we
introduce the concept of breakup of a vertex

For the sake of clarity we concentrate on the F model,
which is one of the simplest vertex models. We define it
on an I x I square lattice. Vertices are located at lattice
sites. The bond variables take the values +1. They can
be represented by arrows (e.g. , +1 means arrow up or
right, —1 means arrow down or left). At each vertex we
have the constraint that the number of incoming arrows

equals the number of outgoing arrows. Thus there are six
different vertex configurations (six "vertices"), as shown
in Fig. 1. Their statistical weights tv(i), i = 1, . . . , 6, are

e-~, i = 1, 2, 3, 4,
, =5'6'. '

The coupling K & 0 plays the role of inverse temperature.
At K, = ln2 there is a Kosterlitz-Thouless transition.
The correlation length is finite for K )K, and infinite
for K&K, .

In what follows we start by presenting our new loop
algorithm. It turns out that there is one free parameter
in the algorithm. We discuss how to choose an opH, —

mal value. Then we analyze the exponential autocorre-
lation times at K = K, and at K = K,/2. For the opti-
mum algorithm we find a dynamical critical exponent of
z(K, ) =0.71(5) and z(K, /2) =0.19(2). No critical slow-
ing down is visible for the total energy. We brieHy show
how to generalize our algorithm to more general six- and

FIG. 1. The six vertex conFigurations. The labels 1, . . . , 6
follow standard conventions [7].
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Pi i(i)=( 0,
i=12
i =3,4,
i=5, 6,

Pii „,(i) = & reK,
i=12
i =3,4,
i =5, 6;

r is a free parameter for now.
Freezing of a vertex means that its weight must not

change. Since there are only two diferent vertex weights,

eight-vertex models and how to use it for simulations of
quantum spin systems.

The loop algorithm. If we regard the arrows on bonds
as a vector field, the constraint at the vertices is a
zero-divergence condition. Therefore every configuration
change can be obtained as a sequence of loop Pips. By
"loop" we denote an oriented, closed, nonbranching (but
possibly self-intersecting) path of bonds, such that all ar-
rows along the path point in the direction of the path.
A loop Hip reverses the direction of all arrows along the
loop.

Our cluster algorithm performs precisely such opera-
tions, with appropriate probabilities. It constructs closed
paths consisting of one or several loops without common
bonds. All loops in this path are Hipped together.

We shall construct the path iteratively, following the
direction of the arrows. Let bond b be the latest addition
to the path. The arrow on b points to a new vertex v.
There are two outgoing arrows at v, and what we need
is a unique prescription for continuing the path through
v. This is provided by a breakup of the vertex v. In
addition to the breakup, we have to allow for freezing
of v. By choosing suitable probabilities for breakup and
freezing we shall satisfy detailed balance.

The breakup operation is defined by splitting v into two
corners, as shown in Fig. 2. At any corner one of the ar-
rows points towards v, while the other one points away
from v. Thus we will not allow, e.g. , the ul —lr breakup for
a vertex in the configuration 3. A "corner flip" is a flip
of both arrows. For a given breakup, we only allow the
configuration changes resulting from independent corner
Hips. This preserves the zero divergence condition at v.
Notice that a single corner flip transforms a vertex of
weight 1 into a vertex of weight e ~ and vice versa. De-
tailed balance is satisfied with the following probabilities
for choosing a given breakup:

we introduce two freezing probabilities. They are already
determined by the requirement that for a given vertex
configuration the sum of freezing and breakup probabil-
ities must be 1:

1 —reK, i = 1, 2, 3, 4,
)

The range of possible values for r is now obtained by
requiring that all probabilities are between 0 and 1:

0 & r & min(2, e ) .

Assume now that we have broken or frozen all vertices.
Starting from a bond bo, we proceed to construct a closed
path by moving in the arrow direction. As we move from
vertex to vertex, we always have a unique way to continue
the path. If a vertex is broken, we enter and leave it
along the same corner. If the vertex is frozen and of type
1, 2, 3, or 4, we pass through it on a straight line. At
such vertices the path may be self-intersecting. Finally,
if the latest bond b added to the cluster points to a frozen
vertex v of type 5 or 6, the path continues both to the
right and to the left of b, i.e., we start a new loop at v.
The two loops have to be flipped together. In general,
the zero-divergence condition guarantees that all loops
will eventually close.

The break-or-freeze decision for all vertices determines
a unique partitioning of the lattice into closed paths that
can be flipped independently. We choose to perform sin-
gle cluster updates, i.e. , we "grow" a single path from a
random starting bond bo, and flip it. The break-or-freeze
decision is only needed for the vertices along the path.
Thus the computer time for one path is proportional to
the length of that path.

It is easy to see that our algorithm is correct. The
proof of detailed balance is completely analogous to that
for other cluster algorithms [1, 2]. The main ingredient
here is that P l l and Pll already satisfy detailed
balance locally. Furthermore, it is not diKcult to see
that any two allowed configurations can be connected by
a finite number of cluster Hips. Thus a finite power of
the Markov matrix is ergodic.

How do we choose an optimal value for the parameter
r? We have seen that freezing of a vertex of type 5 or 6
forces us to flip two loops together. If we had broken it
up instead, we might have been allowed to fiip the two
loops independently. Thus more freezing leads to larger
clusters We con.jecture that the least possible freezing is
optimal. This is confirmed by numerical tests (see below).
From Eq. (3) we then obtain

FIG. 2. The two breakups of a vertex: ul —lr (upper left—
lower right) and 11—ur (lower left —upper right) .

By maximizing r we also minimize the freezing proba-
bility for vertices of type 1, 2, 3, and 4. Notice that if
we choose r = r ~&, then for K & K, vertices of type 5
and 6 are never frozen, so every path consists of a single



VOLUME 70, NUMBER 7 P H YSICA L R EV I E% LETTERS 15 FEBRUARY 1993

loop. For K & K, on the other hand, vertices of type 1,
2, 3, and 4 are never frozen, so we do not continue a path
along a straight line through any vertex.

There are some distinct differences between our loop
clusters and more conventional spin clusters. For spin
clusters, the elementary objects that can be flipped are
spins; freezing binds them together into clusters. Our
closed loops on the other hand may be viewed as a part of
the boundary of spin clusters (notice that the boundary
of spin clusters may contain loops inside loops). It is
reasonable to expect that in typical cases, building a loop
cluster will cost less work than for a spin cluster. This is
an intrinsic advantage of the loop algorithm.

This can be exemplified nicely for the F model, where
a spin-cluster algorithm —the VMR (valleys-to-mountain
reflections) algorithm [9]—is also available. At K, one
can see that if we use r = r ~q, loop clusters are indeed
parts of the boundary of VMR spin clusters. Since flip-
ping a loop cluster is not the same as flipping a VMR
cluster, we expect the two algorithms to have a different
performance. We found (see [9] and below) that in units
of clusters, the VMR algorithm is more eKcient, but in
work units, which are basically units of CPU time, the
loop algorithm wins. At K~/2, where the loop clusters
are not related [10] to the boundary of VMR clusters,
we found the loop algorithm to be more efBcient both in
units of clusters and in work units, with a larger advan-
tage in the latter.

Performance We teste.d—our new algorithm on L x I.
square lattices with periodic boundary conditions, both
at the transition point K, and at zK, deep inside the
massless phase. We carefully analyzed autocorrelation
functions and determined the exponential autocorrela-
tion time 7.. At infinite correlation length, critical slowing
down is quantified by the relation [1]

(6)

Local algorithms are slow, with z = 2. For comparison,
we performed runs with a local algorithm that flips ar-
rows around elementary plaquettes with Metropolis prob-
ability, and indeed found z = 2.2(2) at K = K, .

In order to make sure that we do observe the slow-
est mode of the Markov matrix we measured a range of
quantities and checked that they exhibit the same 7. As
in [9], the slowest mode is strongly coupled to the sub-
lattice energy. The two sublattice energies [9] add up
to the total energy. The constraints of the model cause
them to be strongly anticorrelated. Within our precision
the true value of 7. is not visible from autocorrelations of
the total energy, which decay very quickly. Only for the
largest lattices do we see a small hint of a long tail in
the autocorrelations. A similar situation occurred in [9],
where, when decreasing the statistical errors, the decay
governed by the true w eventually became visible. Note
that as a consequence of this situation, the so-called "in-
tegrated autocorrelation time" [1] is much smaller than

z = z" —(2 —c) . (7)

Table I shows the autocorrelation time 7. for the opti-
mal choice r =r ~&. At K = 2K„deep inside the mass-
less phase, critical slowing down is almost completely ab-
sent. A fit according to Eq. (6) gives z = 0.19(2). The
data are also consistent with z = 0 and only logarith-
mic growth. For the cluster size exponent c we obtained
c = 1.446(2), which points to the clusters being quite
fractal. At the phase transition K = K, we obtained
z = 0.71(5), which is still small. The clusters seem to be
less fractal: c = 1.060(2).

We noted above that at K = K, and for the optimal
choice of r, the loop clusters are related to the VMR spin
clusters. In [9] we obtained for the VMR algorithm at
K = K, the result z" = 1.22(2), but we had c = 1.985(4),
which left us with z = 1.20(2). In this case it is the
smaller dimensionality of the clusters that makes the loop
algorithm more efFicient.

As mentioned, no critical slowing down is visible for
the integrated autocorrelation time of the total energy.
At K = K„r;„i(E)is only 0.80(2) on the largest lattice,
and we find z;„i(E) = 0.20(2). At K = 2K„r;„&(E) is
1.1(l) on all lattice sizes, so z;„i(E) is zero.

What happens for nonoptimal values of r? Table II
shows our results on the dependence of z on r. z rapidly
increases as r moves away from r p&. This effect seems
to be stronger at 2K, than at K, . We thus see that the
optimal value of r indeed produces the best results, as
conjectured from our principle of /east possible freezing

In the massive phase close to K„we expect [10] that
z(K, ) will determine the behavior of r in a similar way as

TABLE I. Exponential autocorrelation time 7. at r = rQpg,
and the resulting dynamical critical exponent z.

8
16
32
64

128
256

z

1.8(l)
3.0(2)
4.9(4)
7.2(7)

15.5(1.5)
20.5(2.0)

0.71(5)

4.9(4)
5.6(2)
6.2(3)
7.4(3)
8.3(2)

0.19(2)

~, and it would be completely misleading to evaluate the
algorithm based only on its values.

We shall quote autocorrelation times w in units of
"sweeps" [1]. We define a sweep such that on average
each bond is updated once during a sweep. Thus, if
7-' is the autocorrelation time in units of clusters, then
r = r" x (cluster size)/2L . Each of our runs consisted
of between 50000 and 200000 sweeps. Let us also de-

cl
fine z' by w" oc I', and a cluster size exponent c by
(cluster size) oc Lc. We then have
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TABLE II. Dependence of the dynamical critical expo-
nent z on the parameter r. We use "&" where for our lattice
sizes 7. increases faster than a power of L.

—K,1
2
1—K,2
—'K,
K,
K,
K,
K,

0.500
0.450
0.400
0.500
0.475
0.450
0.400

0.19(2)
1.90(5)

& 2.6(4)
0.71(5)
0.77(6)
0.99(6)

& 2.2(1)

in Ref. [9]. To confirm this, a finite size scaling analysis
of ~ is required.

Generalizations and outlook. —For the sake of clarity
we have described our approach in terms of the F model
only. It has, however, a much wider range of applicability.
We will give a detailed description elsewhere [10]. Here
we shall mention only a few highlights.

Our "breakup of vertices" and subsequent path flip au-
tomaticatty satisfies the constraints of the F model. Gen-
eral 6- and 8-vertex models [7] with arrow flip symmetry
have related constraints. By using the framework of Kan-
del and Dornany [2] and the principle of minimal freezing,
we can generalize the breakup operation [10] to obtain
efBcient algorithms for these cases too. Algorithms for
more general vertex models can be engineered along the
same lines.

Particularly promising is the possibility of acceterat-
ing quantum Monte Carlo simulations [10, ll]. Quantum
spin systems in one and two dimensions can be mapped
into vertex models in 1+ 1 and 2+ 1 dimensions via the
Trotter formula and suitable splittings of the Hamilto-
nian [ll]. The simplest example is the spin 2 2:xz quan-
tum chain, which is mapped into the 6-vertex model. For
higher spins, more complicated vertex models result (e.g. ,
19-vertex model for spin 1).

For 2+ 1 dimensions, difI'erent splittings of the Hamil-
tonian can lead to geometrically quite difFerent situations
[10,ll]. We can, e.g. , choose between 6-vertex models on
a complicated (2+ 1)-dimensional lattice, and models on
a bcc lattice with 8 bonds (and a large number of conflgu-
rations) per vertex. In all these cases, the constraints are
of a similar nature as in the F model, and our approach
of constructing and updating clusters which are paths can
be applied in a straightforward way. Notice also that in
our approach it is easy to change global properties like
the number of world lines or the winding number (see
[»])

Recently we received a paper by Wiese and Ying [12]
on a difI'erent cluster algorithm for spin 2 quantum spin
systems. After mapping to a vertex model similar to
the one me refer to, they combine vertices into "block
spins" which are then used in a standard spin-cluster

construction. This approach restricts the possible up-
dates of the arrows. In our language, their clusters are
sets of loops that are frozen together, i.e. , that have to
be flipped together. For some interesting cases, e.g. ,

the one-dimensional Heisenberg ferromagnet and two-
dimensional Heisenberg ferromagnet and antiferromag-
net, the additional freezing leads to the problem of frus
tration for the block-spin clusters. We expect our algo-
rithm to perform better in these cases, both because our
clusters have less loops and because of the added flexi-
bility ofI'ered by the possibility to optimize.

In conclusion, we have presented a new type of cluster
algorithm. It Hips closed paths of bonds in vertex mod-
els. Constraints are automatically satisfied. We have
successfully tested our algorithm for the F model and
found remarkably small dynamical critical exponents.

There are many promising and straightforward appli-
cations of our approach, to other vertex models, and
to (1+1)- and (2+1)-dimensional quantum spin systems.
Investigations of such systems are in progress.
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