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The low frequency second-harmonic transport response of multiprobe mesoscopic systems is analyzed
using perturbation theory without explicit dephasing mechanisms. The intuitive conjecture that the
second order transport current may be viewed as a linear conductance probing a distorted scattering po-
tential is explicitly demonstrated in zero magnetic field 8. For nonzero B, however, this simple picture
breaks down, and 1(20) becomes a non-Fermi-surface quantity. A novel way of generating a second-
harmonic transport current is predicted.

PACS numbers: 72. 15.6d, 72. 10.Bg, 73.50.Bk

The Landauer-Biittiker model has long been the para-
digm describing linear dc transport in mesoscopic systems
[1,2]. This framework separates a four-point resistance
measurement on a length scale L +L& (the electron de-
phasing length) into quantum coherent propagation be-
tween leads and spatially separate dissipation occurring
inside remote reservoirs. The linear conductance is then
an algebraic combination of interlead transmission
coe%cients evaluated at the Fermi surface. The current
through the sample depends only on the electrochemical
potentials of the reservoirs, not on how the electrostatic
potential varies between the leads. Recently there has
been interest [3-9] in low frequency nonlinear mesoscop-
ic transport. Guided by analogy with nonlinearities such
as optical second-harmonic generation at surfaces, it may
be anticipated that such measurements could probe phe-
nomena inaccessible to the linear response. One aspect of
nonlinear transport concerns low frequency second-
harmonic generation, where a current 1(Q) at frequency
0 is imposed on a multiprobe mesoscopic system and the
voltage response at 20 is measured. Although experi-
ments of this type demonstrated the eAect's quantum in-
terference origins, they raised several unanswered ques-
tions: Is the quantity probed by second-harmonic genera-
tion restricted to properties at the Fermi surface? Can it
be expressed in terms of equilibrium interlead transmis-
sion coe%cients? Is it simply the linear conductance in-
terrogating a distorted scattering potential, as assumed in

some previous work [6,7]? How does the variation of the
electrostatic potential enter and what is the role of
Poisson's equation?

To resolve these issues it is constructive to look again
towards nonlinear optics for a possible starting point [10].
These phenomena occur when the optical fields begin to
alter the wave functions of the atoms being measured,
and may be described by a perturbation method. An ap-
proach similar in spirit is taken here. Still retaining the
assumption of spatially separate coherent propagation
and dissipation in reservoirs, a microscopic linear
response (Kubo) formalism [11] is extended to second or-
der. This treatment is a natural extension of the first or-
der calculation, which explicitly derived the Landauer-
Buttiker picture. At the same time the spatial variation
of the electrostatic potential is handled self-consistently.

This diff'ers from previous theoretical investigations of
nonlinear transport. The surprise is that only for B=0 is
the second order ac response a Fermi-surface quantity
that can be viewed in terms of distorted interlead
transmission coeScients. This is due to a volume current
generation mechanism derived below.

Figure 1 illustrates the model of Baranger and Stone
adopted here [11]. A sample of volume V is connected to
infinitely long disorder-free leads serving as reservoirs.
The unperturbed Hamiltonian is of the single electron
form: Ho = (I/2M) [(6/i )V —(e/c)A] +U(r) with
eigenfunctions y„(r) at continuous energy levels e„. In

V, U corresponds to some disordered potential, while in

the leads t)U/r)x =0, where x is outgoing along the lead.
A describes the static magnetic field. For simplicity, ex-
plicit dephasing is not included. The perturbing Hamil-
tonian is taken as HtP] =fdl p(1)P(l, t), where p is the
charge-density operator, p is the total (screened) electro-
static potential, and the spatial variable 1=ri ranges here
over V and the leads. The leads are taken as perfect con-
ductors so tt =&9;, a constant on lead i Capacito. r plates
situated where y(r) =0 vary the electric field inside V in

a manner consistent with the applied @;.
The external potentials on the leads and plates, which

are all grounded (p =0) in equilibrium, oscillate as cosset
with a typical experimental frequency 0 ~ 10 Hz.
Since A is less than typical wave-packet traversal rates
across micron-sized samples and dephasing rates ( & 10
Hz), the 0 0 limit is appropriate. The density matrix

I tr Is~sl 111[

R::

FIG. l. A schematic of the model used to analyze the second
order mesoscopic current response. The potential U(r) is some
arbitrary disordered potential inside the sample volume (V) and

also confines the electrons to the ideal disorder-free semi-
infinite leads (i,j,k, l). The electrostatic potential is assumed
constant in each lead and the electrons experience EAO only in

V. A nearby capacitor plate (C) is also shown.
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V iiyp (r ) = —4yr Tr [f~ [F2]p (r ) +f2 [i' ~, i' ~
]p(r ) l .

We are interested in the current response

(J (0,1)) =TrIFp+F~ +Fp+

Fp =fp j,(0),
F ) f ] [Ip / ]j.(o),

(f2 [ip / i' 'i ] +f ( [ip2 l )j.(0) —=& +&,

(2)

(3)

is expanded in powers of H as f =fp+f [i']+fp[ip, i']+, where fp is the Fermi function describing global
equilibrium. ip must obey the self-consistency require-
ment V iiy(r) = —4yrTrfp(r) U. sing the expansion of f
one can write the charge-density response in powers of H
to generate p =&~+&2+, corresponding to self-
consistent screening to first, second, and higher order in

H. This gives

V y) (r) = —4yrTr If ( [y)]p(r)l, (1)

and particularly in the second-harmonic transport current
up lead i, I; (2A) =fdSp;, (J,(0)), the surface integral in

ro being over a cross section of lead I,. Fo describes equi-
librium (dc) persistent currents, which do not contribute
to transport. F

~ represents the linear response generated
by the ftrst order potential distorting wave functions to
first order [11]. F2 generates currents at 2A and dc.
Within this interesting nonlinear term, 2 corresponds to
currents produced by the first order potential distorting
wave functions to second order, and B to currents arising
from the second order potential acting to first order.

Linear response corresponds to solvinp the first order
time evolution equation i h Bf~/Bt = [Hp,f~]+ [H~,fp],
with f~=f~[p~] and H~=H[p~], to compute I;(0). To
calculate I; (20) we replace p~ in f~[iti~] by pq. Pq and
I,"(20) both require f2[ital~, p~] from the second order
equation of motion: ih 6f2/c)t =[Hp, f21+ [H~,f~], with

fq=f2[ip~, p~] and f~ =f~[&~]. I; (2Q) is computed as
0 0 to yield [12]

(J.'(2n, o)) =

—itchy(e„p)
6 P

+iyrI'y(e „)
~~m ~mn

8
tyre(Gap )

~~m ~mp

—P
+iyrcy(e i, )

~mp &np

d 1 d 2 Ep(1 )Ey(2) cr,py(0, 1,2) +E,(0)„d1 Ep(1 ) Yp(0, 1),
r

cr,p„(0, 1,2) =rc g W„p(0),W „(1)pWp (2)„
m, n, p Gmn Gnp

f t p

Y,(o, l) =~,g w „(1)p~„*(0)y (o)
m, n ~mn ~nm

—i tris(e„) (6)

Here m, n, p label complete eigenstates of Ho, P denotes
principal value, e „=e —e„, f „=fp(& ) —fp(e„),
W„,„(1)p—= ( —2M/ieh)(rnl jp(1)ln), and rc =( —i/
16)(eh/M) h', x.y=( —i/4)(eh)'/M'. E.(0)

ip~ (0) is the first order electric field in V, and the
spatial integrals are over V only. Since E =0 in the leads,
integrating twice by parts gives

I,"(2n) =I"+I;"+I;", (7)

Ii =gclyj+g cr py(0, 1,2)dSp; dS~&pdSQ/&y,

Ii~ = g&t, d lite](1) dSpiadS2ky[crapy p(0, 1,2)

+c „pp(0, 2, 1)l,

tion, the surface integrals may be evaluated anywhere
along the leads.

Under constant current bias conditions [3,4] where
I, (Q) = ld(A) =I, Ii, (O)—=0 for leads k&s, d, and
Ik(20) =0 for all k, the imposed current at 0 generates
the reservoir potentials &i, (Q) through the linear conduc-
tance GL. The reservoir and capacitor potentials provide
boundary conditions for Eq. (1) with solution i'~(r, 0).
Because I; (2Q) is the first order current response to pq,
I; (20) =gz(GL);i+2J(2A), where Nq&(20) is py(r, 20)
for r on lead j. Since I,"(2A)+I; (2A) =0, we have
@;(2A)= —Pz(GL ');JI~ (20), where Ij~ is given by (7)
with &t, =&9k (0), and there is no need to solve (2) [13].

To relate I;(2A) to transmission amplitudes we intro-
duce the Green's functions

I vv

AG, (0, 1) =G,+ (0, 1) —G, (0, 1),

838

d 1 d 2 P ) (1 )P ) (2) dS pia crap y, py(0, 1,2) .
G,—(0, 1) = lim gy„(0)sty„*(1)/(e —e„~ trl)

n —o+ nHere the subscript P denotes c)/clr~p. The three terms on
the right-hand side of (7) are designated as the surface-
surface (SS), surface-volume (SV), and volume-volume
(VV) contributions according to how the two potential
factors enter: as a surface integral at a lead or as a For example, as xp, x~ ~ in leads j&k, G(0, 1) can be
volume integral over V. As a result of current conserva- related to the scattering amplitude from lead k to lead j

[11]. The result for the VV current is

I"(»)=
I .l(1/2)'(1/2 )(2M/h')'„", d 1 d2e (1)e (2)„"dso.„d fo( )

x Re[kG, (2, 1)ZG,(1,0)D(0),ZG, (0, 2)l . (8)
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Here

g(0)D(0),h(0) —=g(0) [[t)/t)rp, —(ie/hc)A, (0)]h (0)j —[[r)/r)rp, + (ie/hc)A, (0)]g(0)Ih(0) .

The SS and SV currents yield much lengthier expressions
!that also contain energy derivatives of fp(e) besides terms

like VV without such derivatives. Equation (1) may be
reduced to a linear inhomogeneous integral equation for
pi [12]. Fortunately it is not necessary to delve into it to
grasp the essential physics.

Linear response [11] yields I; (0) =Pi(GL );J+~ (& ),
where Gq involves interlead transmission amplitudes near
the Fermi surface. For I(2A), I; +I; AO even for
8=0, so I;(2&)&g~ gGtit, @i+t,. In contrast to the lin-

ear response, the second order current also depends on
how the potential drops through V. Because I and I
involve propagation to points inside V (see Fig. 2), the
response cannot be written in terms of equilibrium inter-
lead transmission amplitudes or their energy derivatives.
The insensitivity of the linear conductance to how p(r)
varies inside V arises from the severe constraints imposed
by current conservation and time-reversal symmetry [11].
These requirements are not as restrictive regarding
I(20). Unlike the linear response, I(2Q) is not a simple
commutator and so does not obey the Onsager-Buttiker
symmetries [2, 14].

For 8&0, I(20) contains off-Fermi-surface (OFS)
contributions arising from terms without an energy

!

derivative of fp(e). A simple physical argument explains
why 1(Q) is a Fermi-surface quantity while 1(20) is not.
Consider linear transport as an electron incident in state
!i) at energy e, interacting once with p(r) and emerging
in !f) at energy ef. Since total energy is conserved and to
maintain phase coherence, one must have cf =c; =p, at
T=O where p, is the source reservoir's electrochemical
potential. !f) later relaxes to the drain electrochemical
potential within the drain lead. When two scatterings off
tp(r) occur, generating I(20), !i) first scatters to an in-
termediate state ! v) which then scatters to a final state
!f) with ef =e;. ! v), however, need not be at this energy.
As 0 0 energy conservation may be violated at each
vertex so long as overall energy conservation is main-
tained.

The perturbation approach also answers whether the
second order response can be viewed as a linear conduc-
tance probing scattering off a distorted potential. This in-
terpretation separates the two actions of p into in-
equivalent roles: One distorts the scattering potential and
the other probes it through modified transmission ampli-
tudes. For this to be true, one must demonstrate that, as
n —0,

I; (2 0 ) ec g &~J' dS p;, dS i&p J"def'(e) Ii [6,+ (0, I )D (0),*D( I )pG, (1,0) ]
J+I

2 +;Jt dSp; dSitpJ deaf'(e)6[66 (0, 1)D(0)*D(1)phG (1,0)], (9)

which is written in the form of a modified linear current [1
order case,

6[6+(0,1)D(0)*D(1)G (1,0)] =SG+(0, 1)D(0)*D(I
where the 66 correspond to first order perturbed (non-
equilibrium) propagators [15]. These 86 can be writ-
ten as Ji d 2 Er(2) && (products of 6). Using E (2) r= —

p r(2), and integrating by parts, we see that a second
order response of the form (9) contains SS and SV terms
but cannot generate a VV current. Time-reversal sym-
metry dictates that the VV term (8) is antisymmetric in

the magnetic field 8, and I;(2Q) does take the form (9)
for 8=0. For 8&0, however, the second order current
cannot be viewed as scattering off a modified potential.
Most importantly, the VV term implies that theories of
ac nonlinear mesoscopic transport expressed as modified
transmission coefficients [6,7] are limited to zero magnet-
ic field.

Figure 2 displays a physical description of these results.
In linear response current conservation and time-reversal
invariance require that I; (0) depends only on the lead
potentials. Figure 2(a) depicts how the linear currents
can be interpreted as ip causing a charge buildup via
electron-hole creation in lead j. These propagate across
V, and a current Aows up lead i. The SS, SV, and VV
pieces of I(20 ) involve two actions of ~p [Figs.

1] where 6 represents the distorting action. For the second

)6 (I,O)+6+(0, 1)D(0)*D(1)66 (1,0),

2(b)-2(e)]. VV has p acting twice in the interior of V.

One of the two contributions to VV is shown in Fig. 2(d),
where p(1) creates an electron-hole pair, p(2) subse-
quently scatters the electron, and then current is project-
ed up lead i Figure 2(e. ) shows the other part of VV
which represents the current being generated first accom-
panied by pair creation, followed by the electron scatter-
ing off p(2), and finally p(1) absorbs the pair [time re-
verse of Fig. 2(d)]. In the absence of a magnetic fiux
threading V these two counterpropagating currents can-
cel, but for 8&0 oppositely signed Aharonov- Bohm
phases produce a nonzero sum. Such VV currents cannot
be viewed as distorted linear currents since I(A) arises
purely from charge pileup in the leads. The OFS contri-
butions to the SS and SV terms also arise from similar
processes that cancel for B =0. Therefore the VV
currents grow to the size of the other currents when a Aux

of order hc/e threads V.

The presence of the VV term suggests an intriguing ex-
periment. Suppose all the leads connected to V are
biased at ground potential while a nearby capacitor volt-
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age oscillates at A. Then I; (2II ) =I; (2II ) ~0 for
nonzero fields, and I; (2Q) =QJ (GL);1+2& (2. fI ) =0.
Consequently, a second-harmonic current Aows in the
leads generated only by the changing potential profile in-
side V without any analogous linear current. The order
of magnitude of this "volume generated current" is
roughly the same as the corresponding second-harmonic
current generated by biasing the leads.

On the other hand, if such an experiment were to be
performed strictly at dc (0 =0), then no transport
currents would Aow even for 8&0 because then one sim-

ply has a new equilibrium Hamiltonian Ho with a
modified potential U inside V. The above perturbation

where F, =eV, and 0 =2trf, for heterostructure samples [4]. This yields a current up the leads at 20, of order

(O.37 pA) [y(n)/tt. ,„]'(~/0 Ol) '"[G /(3 an)] '"[V/(21 l V)] '"[f/(I kHz)] '".

analysis, however, only computes the response to H
through second order, ignoring higher order processes.
All of these must be summed to obtain the strict dc
response. When can these higher order terms be neglect-
ed' The perturbation approach is an expansion in the
number of interactions an electron experiences with the
oscillatory electrostatic potential while crossing V. The
probability g of such "photon" absorption must be small.

g is related to the cycle-averaged energy dissipation rate
P by ti = (P/6 ft )6/E„where It/E, is the time for a wave
packet to traverse V. For the capacitor-biased experi-
ment sketched above, t) —p (2D)G /L2IIE, . tl« I defines
a region in the P(A)-II plane where perturbation theory
holds. This imposes the constraint

y(n) (y „-(34 pV)(rl/001)' [GL '/(3 kft)] [V /(21 pV)l' [f/(I kHz)]'

The expansion fails when t) ) I; then the strong (multi-
photon) interaction with p "dresses" Ho. Perturbation
theory also requires only slightly distorted occupation
numbers: g= (nf t —~n&&&(n foehn& = 1. Computing P for
the T=o two-lead case yields g—eg(II)/E„ in accor-
dance with Altshuler, Khme]nitskii, and Larkin [5].

In conclusion, a perturbation analysis of mesoscopic
second-harmonic current transport has revealed a new
volume generation (VV) mechanism that has no analog
in linear response. For nonzero 8, I(20) contains oft-

(a) Linear (D) 0 ~ 1 = G (1,0) (e]ectron)
0 ~1= G (0,1) (hole)

i, j, k = leads

= lead potentials

0, 1, 2 = spatial variables

tI) (1), tIt (2) = volume potentials

(b) SS (2A) (e) sv (2n)
II' (1)

(d) vv, (2n) (e) VV (2Q)

0 (2) 0 (2)

FIG. 2. Upper right panel defines symbols. (a) Schematic of
linear current generation as charge buildup (electron-hole pair
creation) in lead j, propagation across V, and final current pro-
jection up lead i (b) One e. xample of an SS term in 1(20)
similar to (a) with an extra electron scattering event off the po-
tential in lead k. (c) One SV term, similar to (b) except charge
pileup at point I occurs inside V. (d), (e) The only two process-
es contributing to I;""(2t1). The potential acts twice inside V.

Note the counterpropagating natures of (d) and (e) ensure
their cancellation for 8 =0.
840

Fermi-surface terms, and because of the double interior
action of the electric potential, the commonly held view
that the second order ac response can be pictured as a
linear conductance probing a distorted interlead scatter-
ing potential is incomplete. Experiments are underway to
explore these phenomena directly.

It is a pleasure to acknowledge discussions with H.U.
Baranger and T. K. Ng.
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