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Exact Ground-State Energy of the Periodic Anderson Model in 4 =1 and Extended Emery
Models in d =1, 2 for Special Parameter Values
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We generalize an approach, which was recently introduced by Brandt and Giesekus to calculate the
exact ground-state energy for strongly interacting particles on special perovskitelike lattices, to the
periodic Anderson model in the dimension d =1 and to extended Emery models in d =1,2 on regular lat-
tices for arbitrary spin degeneracy. For these models we calculate the exact ground-state energy for a

restricted parameter regime in the strong-coupling limit.

The ground-state energy shows a simple alge-

braic structure. We also present an eigenfunction of the Hamiltonian with the ground-state energy as its

corresponding eigenvalue.

PACS numbers: 71.10.+x, 71.28.+d, 75.10.Lp

The description of heavy fermion systems [1] by the
periodic Anderson model [2] and of high-7, materials [3]
by the Emery model [4] continues to attract considerable
interest. Despite their simple structure exact results are
rare. Recently, Brandt and Giesekus [5] introduced a
new approach to calculate the exact ground-state energy
for the Hubbard model and for a periodic Anderson mod-
el in the strong-coupling limit (U=9c0) on peculiar
perovskitelike lattices. In addition, they presented an
eigenfunction with the ground-state energy as the corre-
sponding eigenvalue. In this paper we generalize their
approach to the periodic Anderson model (U=00) with
arbitrary spin degeneracy N, in d =1 for a restricted, but
reasonable, parameter regime at half filling. The exact
ground-state energy thus obtained does not show a
Kondo-like exponent. Furthermore, we calculate exactly
the ground-state energy for extended Emery models [in
d=1 we include an oxygen-oxygen hopping term and in
d =2 a (rather artificial) copper-copper hopping term] in
a restricted parameter regime for U =o0 and for arbitrary
spin degeneracy. Here U refers to the on-site interaction
term on the copper sites. In order to apply the procedure
mentioned above we have to consider the Emery model in
d =1 (CuO chains) in the particle picture and in d =2
(CuO; planes) in the hole picture. Whether at U =c0 [6]
the hole or the particle picture is the appropriate one, is
not precisely clear [7].

The periodic Anderson model in d=1.—The Hamil-
tonian of the periodic Anderson model (PAM) in the
strong-coupling limit is given by

I:IPAM =l;{kz:[6£ﬁlia+f{ﬁ/{o + Vk (fljccﬂko-*_é\/jof.kc)] }13 s

(n

where P is a projector on the subspace of zero double oc-
cupancy of f electrons, i.e., P=[1; omo(1 — n,an,(,) with
the combined spin and band index o=1, ,Ng. Here,
Cro (Cko) and fro (fxs) create (destroy) a c electron and

an f electron, respectively, with momentum k and spin o.
The correspondmg number operators are ks =CkoCko
n{a —fk,,fk(, The index i refers to a lattice site (fijo

f,o{,a, 1(1,6 c,zc,o) with f,r,,c,r, as the Fourier transforms
of fis,Crs. Within a tight-binding approximation the
dispersion relations are given by ef = —2fcos(k) and
6{=Ef+2t'cos(k) with #,1'> 0. Note that we assume
the sign of the ¢ electron dispersion to be different from
that of the f electron dispersion, because of the symmetry
of the ¢ and f orbitals. Because of that symmetry the hy-
bridization matrix element ¥, has the form V=2V
xsin(k) (an on-site hybridization is forbidden because of
parity reasons) [8].

In real space we define new operators
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which are not genuine Fermi operators [9]. In order to
express the Hamiltonian Hpam in terms of these new
operators @;, we have to restrict the parameter regime to
t'=V?/t; thus we obtain
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with nf—(l/L)Z,an,m . =(/L)Y A%, where L is the
number of lattice sites. The Hamiltonian can be further
transformed by use of the following identities: @;oQis
=1 _&io'&ia and
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In order to obtain an equation for HPAM where n =nr+h.
enters we choose E;=2t—2N,V?*/t. Hence, Hpam may
be written as
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No approximation has been made. Equation (4) is an ex-
act expression for HpAM in the case of ¢ '=y2/, Ef
=2t —2N,V?%/t. Since a,(,Pa,o is positive semidefinite
(P2=P) we have found a lower bound E;=[—2N,(

+V2/t)+2tn]lL of the exact ground-state energy Eo,

where n is the eigenvalue of 4. In order to obtain an
upper bound we consider the wave function

|\l'>=l3na,a|0> (5)
1,

where |0) is the vacuum state. This wave function corre-
sponds to a total density n =N, One can easily verify
that |¥) is an eigenfunction of HPAM with the eigenvalue
E,=—QN4V?/t)L. From the variational principle it
follows that £, is an upper bound of the ground-state en-
ergy. Since the upper and the lower bound coincide for
n=N,, the exact ground-state energy for the periodic
Anderson model in d =1 is given by

Eo=—QN V)L , (6)

where we set ' =V ?2/t, E; =21t —2NyV2/t,and n =N, In
other words we have calculated the ground-state energy
for the following dispersion relation of the f electrons:
el =2t — QNV?*/1)+@2V?/t)cos(k). The choice N,
=8, t=1¢eV, V=04 ¢V, E;=—0.56 eV, and 1'=0.16
eV which fulfills the two parameter constraints yields

values which are within the expected range.

It is a remarkable fact that the ground-state energy has
such a simple algebraic structure. There is no Kondo-like
exponent in the energy. This Kondo term has been pre-
dicted by several approximation schemes, such as the
mean-field approximation (slave bosons) [10] or the
Gutzwiller approximation [11,12]. In these theories the
single-impurity exponent survives also in the lattice case
with a slight modification. Obviously, in the one-
dimensional periodic Anderson model this Kondo-like ex-
ponent does not exist on the hypersurface of parameter
values that is determined by t'=V?/1, Er=2t — 2NVt
It is possible that the parameter restriction is responsible
for the disappearance of this term [13]. In addition, we
present a nonmagnetic eigenfunction [see (5)] of the
Hamiltonian with the ground-state energy as its corre-
sponding eigenvalue. We cannot decide if this energy is
degenerate. The eigenfunction is of the Gutzwiller type,
because P is the Gutzwiller correlator for U =-c0 and
Il +Gi5]0) is the ground-state wave function for the un-
correlated system (U=0) [but for a different E, value
EfNTO=EU==)42(N,— 1)V ¥1i] [11,12,14]. Such a
chdracterlstlc of the eigenfunction was already found by
Brandt and Giesekus [5] on perovskitelike lattices.

The extended Emery model in d=1.—The Emery
model describes strongly interacting particles (holes) on a
two-dimensional lattice [4]. For reasons of simplicity one
often considers this model in d =1 [15]. Hence, we first
investigate the model on a CuO chain (d=1). In order
to apply the approach presented above we include a hop-
ping term between O sites, which is a reasonable exten-
sion of the Emery model. The Hamiltonian under inves-

| tigation is given by

[.}E(l) [Vzldm([)l-f-ao pl—aa)+H C. ]+tz(p1+zmpl—aa+H C. )+6dznla+5pznl+ao P

o

in the strong correlated limit (particle picture). The lat-
tice consists of alternate copper and oxygen atoms. The
parameter i/ runs over the Cu sites and i & a refers to the
neighboring O sites, where a 1% half the distance between
two Cu sites. The operator d,a (p,lr+,w) creates a particle
with spin ¢ (=1, ...,N,) on the Cu (O) site. The cor-
responding number operators are Al (Al+..). Here, V
parametrizes the hopping between a Cu site and the
neighboring O sites (we take the phase of the orbitals into
account) and 7> 0 is the hopping integral between O
sites. The parameter for the local energy of the d (p)
particles is defined by €, (¢,). Furthermore, P is the pro-
jector on the subspace of zero double occupancy on Cu
sites.

The procedure for determining the exact ground-state
energy is nearly the same as above. First of all we define
new operators (no genuine Fermi operators)

(-

~t 1
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o W ([71+ao Pi—ao)J}- (8)
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(7

As for the PAM we transform the Hamiltonian in terms
of these new operators, where we restrict the calculation
to the parameter regime

(C))

With A=0/L)X; (A% + Al as), where L is the number
of Cu sites, the transformed Hamiltonian may be written
as

eat NV t=e,+2t.
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By means of the discussion presented above the exact
ground-state energy E¢ for n =N, is given by

Eo=Nyle,—V?/)L, ()
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where we set €d+N V2/t =€,+2t. Usually, one considers N,=2 (c=1,]).

tion |¥) —PH, oa,d|0> has the explicit form

o) = t/v
| H 1+2¢2/v?

and it is obviously nonmagnetic. Locally, this wave func-
tion consists of a superposition of a Zhang-Rice-like sing-
let [16] a’,;(p,lat p,*—uy) —d; (p,tral p,T-al) and a
term (Pirar —pr-at) (Pileal — p,_al) As in the case of
the PAM we do not know if the ground state is degen-
erate. The same model (only in the hole representation)
for No =2 was investigated by means of a mean-field ap-
proximation (slave bosons) by Grilli, Kotliar, and Millis
[17]. They obtained a Kondo-like behavior of the ground
state as for the PAM. We showed by our exact result
that such a term does not exist in the parameter regime
defined by Eq. (9). The exact ground-state energy has a
very simple, algebraic structure, there is no nonanalytici-
ty. In high-T, materials one expects 1 <V, €4 > ¢, (par-
ticle picture). Here we investigated the opposite case
[take ¢ <V then €4 < ¢, from (9) for N,=2]. Neverthe-

st yoat . At oAt . 5t Ca A
(Pl+a1 —pi—at)Pital —Pi—a) +di) Pivar —Pi—ar) —d,‘ﬁ (p,-T+a1 —p;T—a1 )] } [0),

In this case the corresponding eigenfunc-

(12)

|

less, this exact energy (11) and the corresponding eigen-
function (12) provide certain insight into the ground-
state properties of the Emery model in d =1 for a param-
eter regime which is restricted only by a single equation
[see (9)].

The extended Emery model in d=2.— We investigate
the ground-state properties of the Emery model on a
two-dimensional CuO, lattice. Instead of the O-O hop-
ping we include a hopping term between Cu sites. We
can deduce the exact ground-state energy only with this
assumption [18]. This additional hopping may be de-
scribed by a parameter ¢, which is small in comparison
with the Cu-O hybridization. It is necessary for our cal-
culation to consider this model in the hole picture.
Hence, the Hamiltonian is given by

AP =P ¥ Vijdipio+He)+1 3 (disdio+H.c. >+ed2n.o+epZnJa] (3

(i,j),o (ii), o

o

in the strong correlated limit. Here, i,i’ run over the Cu |
sites and j over the O sites. The index (- - ) stands for
summation over nearest neighbors. The operator d.t,
(p;ra) creates a hole with spin o on the Cu (O) site. The
corresponding number operators are A%, (A5;). Here, Vjj
parametrizes the hopping between a Cu site and its
neighboring O sites and is given by

V for j=i-—§—y or j=i-£—x,

: (14)

V.. =
Y TX,

—V for j=i+§—y or j=i+

where x,y are unit vectors in the x,y direction. As in the
one-dimensional case we take the phase of the orbitals
into account. The hopping integral between Cu sites is
given by t > 0. The parameter for the local energy of the
d (p) hole is defined by €4 (¢,). Note that these energies
are different from the ones above because here we consid-
er the hole picture. Furthermore, P is the projector on
the subspace of zero double occupancy on Cu sites.

As in the previous models we define new operators (no
genuine Fermi operators)

~F 1
G0~ W{ Bio— (dﬂo Jzo)”. (15)

where jl, j2 are the neighboring Cu sites of the O site j.
We restrict the calculation to the parameter regime
€ataNgt=e,+ V2?1 . (16)

The transformed Hamiltonian has the final form

2
2,+L]+[€,,+7
t

AP = [—2N0

2 .
2’+VT Zajopa}a (17)

with a=(1/L)(%; an|a+ZJ anja) where L is the number
of Cu sites. From this expression it follows (see the pre-
vious sections) that the exact ground-state energy for
n=2N, is given by

Eo=2N(e, —21)L , (13)
where we set 6d+4Nat—e,,+ V2%/t. The corresponding
eigenfunction |\I')—PI_I) ,,a,o|0) is nonmagnetic. As

mentioned above we do not know if the ground state is
degenerate. In high-7, materials one expects <KV,
€4 < €p (hole picture). For N,=2 the choice V=1 eV,
=04 eV, and €, —€;=0.7 eV which fulfills Eq. (16)
lies at the edge of the physically reasonable regime for
high-T, materials. Usually one assumes that the direct
hopping between Cu sites can be neglected. For very
small ¢ Eq. (16) is only fulfilled for e; > €, which is an
unphysical parameter regime. This approach to the two-
dimensional Emery model can be generalized also to
higher dimensions.

In this paper we calculated the exact ground-state en-
ergies for the periodic Anderson model in d =1 and ex-
tended Emery models in 4 =1,2 in the strong correlated
limit for a fixed density of particles (holes) and for arbi-
trary spin degeneracy N,. We presented the exact ener-
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gies, which show very simple algebraic structure, for a re-
stricted parameter regime. In the case of the PAM we do
not find a Kondo-like exponent in the exact ground-state
energy for all N, Additionally, we presented nonmag-
netic eigenfunctions with the ground-state energies as
their corresponding eigenvalues. The one-dimensional re-
sults cannot be generalized to higher dimensions in con-
trast to the models investigated by Brandt and Giesekus
[5]. These exact results may be used as a benchmark for
Monte Carlo studies of the periodic Anderson model in
d =1 and of the Emery model in d =1,2.
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