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Exact Ground-State Energy of the Periodic Anderson Model in d= 1 and Extended Emery
Models in d = 1,2 for Special Parameter Values
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We generalize an approach, which was recently introduced by Brandt and Giesekus to calculate the
exact ground-state energy for strongly interacting particles on special perovskitelike lattices, to the
periodic Anderson model in the dimension d=1 and to extended Emery models in d=1, 2 on regular lat-
tices for arbitrary spin degeneracy. For these models we calculate the exact ground-state energy for a
restricted parameter regime in the strong-coupling limit. The ground-state energy shows a simple alge-
braic structure. We also present an eigenfunction of the Hamiltonian with the ground-state energy as its
corresponding eigenvalue.

PACS numbers: 71.10.+x, 71.28.+d, 75. 10.Lp

The description of heavy fermion systems [1] by the
periodic Anderson model [2] and of high-T, materials [3]
by the Emery model [4] continues to attract considerable
interest. Despite their simple structure exact results are
rare. Recently, Brandt and Giesekus [5] introduced a
new approach to calculate the exact ground-state energy
for the Hubbard model and for a periodic Anderson mod-
el in the strong-coupling limit (U =~) on peculiar
perovskitelike lattices. In addition, they presented an
eigenfunction with the ground-state energy as the corre-
sponding eigenvalue. In this paper we generalize their
approach to the periodic Anderson model (U=~) with
arbitrary spin degeneracy N in d =1 for a restricted, but
reasonable, parameter regime at half filling. The exact
ground-state energy thus obtained does not show a
Kondo-like exponent. Furthermore, we calculate exactly
the ground-state energy for extended Emery models [in
d=1 we include an oxygen-oxygen hopping term and in

d =2 a (rather artificial) copper-copper hopping term] in

a restricted parameter regime for U =~ and for arbitrary
spin degeneracy. Here U refers to the on-site interaction
term on the copper sites. In order to apply the procedure
mentioned above we have to consider the Emery model in
d= 1 (CuO chains) in the particle picture and in d =2
(CuOz planes) in the hole picture. Whether at U =~ [61
the hole or the particle picture is the appropriate one, is
not precisely clear [7].

The periodic Anderson model in d=1.—The Hamil-
tonian of the periodic Anderson model (PAM) in the
strong-coupling limit is given by

HPAM P Z[eknk + &Ink + Vk(fk&k +ck fk )],P,
k, cr
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which are not genuine Fermi operators [9]. In order to
express the Hamilton ian H p~M in terms of these new

operators a; we have to restrict the parameter regime to
t'= V /t; thus we obtain

p2
HPAM P 2 t + Qaj~at(y

t, o

2

+L Ef+2- nf+2tn, 'P, (3)

with nf =(I/L)g; n;, n, =(I/L)g; n,', where L is the
number of lattice sites. The Hamiltonian can be further
transformed by use of the following identities: a; a;
=1 —a; a; and

an f electron, respectively, with momentum k and spin cr.

The corresponding number operators are nk~ =ck~k~
nk~=fk~fk~ The in. dex i refers to a lattice site (n;

ft g;, n,' =c; c; ) with f;,c; as the Fourier transforms
of fk~, ck . Within a tight-binding approximation the
dispersion relations are given by ef = —2t cos(k) and

ef, =Ef+ 2t 'cos(k ) with t, t' & 0. Note that we assume
the sign of the c electron dispersion to be different from
that of the f electron dispersion, because of the symmetry
of the c and f orbitals. Because of that symmetry the hy-

bridization matrix element Vk has the form Vk =2 V
x sin(k) (an on-site hybridization is forbidden because of
parity reasons) [8].

In real space we define new operators

where P is a projector on the subspace of zero double oc-
cupancy of f electrons, i.e. , P=+; ~ (1 —n; n; ) with

~ ", -f -f,
the combined spin and band index o.= 1, . . . , N . Here,

At A

(ck~) and f«(f«) create (destroy) a c electron and

Pa; a; P=a; Pa; + g (n; +rt;+) )P/(2+2t /V ).
o'(&o)

In order to obtain an equation for Hpp, M where n =nf+ n,
enters we choose Ef =2t —21V V /t Hence, Hpp. ,M may
be written as
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HpAM = —2%a t+ +2tn PL
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+2 t+ ga; Pa;
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(4)

where !0) is the vacuum state. This wave function corre-
sponds to a total density n =% . One can easily verify
that !+) is an eigenfunction of HppM with the eigenvalue
E„=—(2N V /t)L. From the variational principle it
follows that E, is an upper bound of the ground-state en-

ergy. Since the upper and the lower bound coincide for
n =W, the exact ground-state energy for the periodic
Anderson model in d =

1 is given by

Eo= —(2N V /t)L,
where we set t' = V /t, Ef =2t —2N V /t, and n =N . In

other words we have calculated the ground-state energy
for the following dispersion relation of the f electrons:
ej=2t —(2N V /t)+(2V /t) cso(k). The choice N

=8, t =1 eV, V=0.4 eV, Ef = —0.56 eV, and t'=0. 16

eV which fulfills the two parameter constraints yields

No approximation has been made. Equation (4) is an ex-
act expression for Hp~M in the case of t'= V /t, Ef
=2t —2N V /t Since. a; Pa; is positive semidefinite
(P =P) we have found a lower bound Et = [ —2N (t
+ V /t)+2tn]L of the exact ground-state energy Eo,
where n is the eigenvalue of n. In order to obtain an

upper bound we consider the wave function

(5)

values which are within the expected range.
It is a remarkable fact that the ground-state energy has

such a simple algebraic structure. There is no Kondo-like
exponent in the energy. This Kondo term has been pre-
dicted by several approximation schemes, such as the
mean-field approximation (slave bosons) [10] or the
Gutzwiller approximation [11,12]. In these theories the
single-impurity exponent survives also in the lattice case
with a slight modification. Obviously, in the one-
dimensional periodic Anderson model this Kondo-like ex-
ponent does not exist on the hypersurface of parameter
values that is determined by t'= V /t, Ef =2t —2N V /t
It is possible that the parameter restriction is responsible
for the disappearance of this term [13]. In addition, we

present a nonmagnetic eigenfunction [see (5)] of the
Hamiltonian with the ground-state energy as its corre-
sponding eigenvalue. We cannot decide if this energy is

degenerate. The eigenfunction is of the Gutzwiller type,
because P is the Gutzwiller correlator for U=~ and

a; !0) is the ground-state wave function for the un-
correlated system (U=O) [but for a different Ef value
E =E/ +2(N —

I ) V /tl [11,12, 14]. Such a
characteristic of the eigenfunction was already found by
Brandt and Giesekus [5] on perovskitelike lattices.

The extended Emery model in d = 1.—The Emery
model describes strongly interacting particles (holes) on a
two-dimensional lattice [4]. For reasons of simplicity one
often considers this model in d= I [15]. Hence, we first
investigate the model on a Cu0 chain (d=l). In order
to apply the approach presented above we include a hop-
ping term between 0 sites, which is a reasonable exten-
sion of the Emery model. The Hamiltonian under inves-

!
tigation is given by

HF- =P Vg[di~(p;+g~ —p; —,~) + H.c.] +tg(p;+, ~p; —,~+ H. c.)+eden; + e gn,"+, p (7)
l, a' l, a l, a l, a

in the strong correlated limit (particle picture). The lat-
tice consists of alternate copper and oxygen atoms. The
parameter i runs over the Cu sites and i ~ a refers to the
neighboring 0 sites, where a is half the distance between
two Cu sites. The operator d; (p;+, ) creates a particle
with spin a (cr =1, . . . , N ) on the Cu (0) site. The cor-
responding number operators are n; (n;+, ). Here, V

para metrizes the hopping between a Cu site and the
neighboring 0 sites (we take the phase of' the orbitals into
account) and t ) 0 is the hopping integral between 0
sites. The parameter for the local energy of the d (p)
particles is defined by ed (ep). Furthermore, P is the pro-
jector on the subspace of zero double occupancy on Cu
sites.

The procedure for determining the exact ground-state
energy is nearly the same as above, First of all we define
new operators (no genuine Fermi operators)

HF = —N 2t+ +(e„+2t)n PL
t

+ 2t+ ga; Pa; (10)

By means of tip discussion presented above the exact
ground-state energy Eo for n =% is given by

EO=N (ep —V /t)L,

! As for the PAM we transform the Hamiltonian in terms
of these new operators, where we restrict the calculation
to the parameter regime

ed +N V '/t =
ep + 2t .

With n =(I/L)g; (n; +n;+, ), where L is the number
of Cu sites, the transformed Hamiltonian may be written
as
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where we set ed+iV V /t =e~+2t Usually, one considers N =2 (cr= t, J). In this case the corresponding eigenfunc-
tion !sfp) =PQ; a; !0) has the explicit form

I+) =II
I+2t /V

(pi+af pi —af )(pi+ af pi —af )+dif (pi+af pi —af ) di f (pi+af pi —af ) !0), (i 2)

and it is obviously nonmagnetic. Locally, this wave func-
tion consists of a superposition of a Zhang-Rice-like sing-
let [16] d;I (p(+af p' — t) —d 1 (p;+af —p;, I ) and a
term (P;+, I

—P; —af)(P;+af —P;,1). As in the case of
the PAM we do not know if the ground state is degen-
erate. The same model (only in the hole representation)
for N =2 was investigated by means of a mean-field ap-
proximation (slave bosons) by Grilli, Kotliar, and Millis
[17]. They obtained a Kondo-like behavior of the ground
state as for the PA M. We showed by our exact result
that such a term does not exist in the parameter regime
defined by Eq. (9). The exact ground-state energy has a
very simple, algebraic structure, there is no nonanalytici-
ty. In high-T, materials one expects t & V, ed & ez (par-
ticle picture). Here we investigated the opposite case
[take t & V then ed & ez from (9) for N =2]. Neverthe-

!
less, this exact energy (11) and the corresponding eigen-
function (12) provide certain insight into the ground-
state properties of the Emery model in d=1 for a param-
eter regime which is restricted only by a single equation
[see (9)].

The extended Emery model in d=2.—We investigate
the ground-state properties of the Emery model on a
two-dimensional Cu02 lattice. Instead of the O-O hop-

ping we include a hopping term between Cu sites. We
can deduce the exact ground-state energy only with this
assumption [I8]. This additional hopping may be de-
scribed by a parameter t, which is small in comparison
with the Cu-0 hybridization. It is necessary for our cal-
culation to consider this model in the hole picture.
Hence, the Hamiltonian is given by

HF =P g V;&(d; pj +H.c.)+t g (d; d; +H.c.)+eden; +epgn;"P
(i,j),o (ii'), a. i, o j,o

in the strong correlated limit. Here, i, i' run over the Cu
sites and j over the 0 sites. The index ( ) stands for

A

summation over nearest neighbors. The operator d;
(pj~ ) creates a hole with spin cx on the Cu (0) site. The
corresponding number operators are n"; (n~& ). Here, V;)
parametrizes the hopping between a Cu site and its
neighboring 0 sites and is given by

V for j=i —
2 y or j=i —

2 x,
—V for j=i+ 2 y or j=i+ 2 x, (i 4)

where x, y are unit vectors in the x,y direction. As in the
one-dimensional case we take the phase of the orbitals
into account. The hopping integral between Cu sites is

given by t & 0. The parameter for the local energy of the
d (p) hole is defined by ed (e~). Note that these energies
are diA'erent from the ones above because here we consid-
er the hole picture. Furthermore, P is the projector on
the subspace of zero double occupancy on Cu sites.

As in the previous models we define new operators (no
genuine Fermi operators)

ed+4N t =e~+ V /t .

The transformed Hamiltonian has the final form

(i 6)

Q)ppaPj(d)1d)2) f, (S)i+2t'/V' ' '

where jl, j2 are the neighboring Cu sites of the 0 site j.
We restrict the calculation to the parameter regime

V 2

HE = —2N 2t+ V 2

+ pz+ n PL

+ 2t+' (i 7)
j,~

with n =(I/L)(g; n; +g& n& ), where L is the number
of Cu sites. From this expression it follows (see the pre-
vious sections) that the exact ground-state energy f'or
n =2N is given by

E() =2N (ep —2t )L,
where we set ed+4iV t =ep+ V /t. The corresponding
eigenfunction ! sip) =PQ; ctj !0) is nonmagnetic As.
mentioned above we do not know if the ground state is

degenerate. I n high-T, . materials one expects t « V,

ed & ez (hole picture). For iV =2 the choice V= I eV,
t =0.4 eV, and e~

—ey =0.7 eV which fulfills Eq. (16)
lies at the edge of the physically reasonable regime for
high-T, materials. Usually one assumes that the direct
hopping between Cu sites can be neglected. For very
small t Eq. (16) is only fulfilled for ed & e~ which is an
unphysical parameter regime. This approach to the two-
dimensional Emery model can be generalized also to
higher dimensions.

In this paper we calculated the exact ground-state en-
ergies for the periodic Anderson model in d=1 and ex-
tended Emery models in d=1, 2 in the strong correlated
limit for a fixed density of particles (holes) and for arbi-
trary spin degeneracy N . We presented the exact ener-
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gies, which show very simple algebraic structure, for a re-
stricted parameter regime. In the case of the PAM we do
not find a Kondo-like exponent in the exact ground-state
energy for all N . Additionally, we presented nonmag-
netic eigenfunctions with the ground-state energies as
their corresponding eigenvalues. The one-dimensional re-
sults cannot be generalized to higher dimensions in con-
trast to the models investigated by Brandt and Giesekus
[5]. These exact results may be used as a benchmark for
Monte Carlo studies of the periodic Anderson model in
d=1 and of the Emery model in d=1,2.
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