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Rotating Temperature Pulse During Hydrogen Oxidation on a Nickel Ring
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Reaction-diffusion interactions generate spatiotemporal patterns in a variety of uniformly acti t e
chemical media. It is of interest to know how these patterns are aff'ected by media nonuniformity. Here,
we report the first observation of a rotating temperature pulse on a nonuniformly active (i.e., polycrystal-
line) surface of a nickel ring during atmospheric hydrogen oxidation. The pulse had an amplitude of
about 100'C and completed one cycle around the ring every 565 s. Its width, velocity, and maximum
temperature changed during each cycle, but were constant at a given position.

PACS numbers: 68.3S.—p, 82.65.—i

Numerous numerical and theoretical studies have en-
lightened our understanding of spatiotemporal patterns
[1-4], while experimentalists have been looking for model
systems with low spatial dimensionality to confront these
predictions with actual measurements and to gain insight
into the behavior of more complex systems and geome-
tries. Reaction-diffusion models with either oscillatory or
excitable kinetics predict propagating pulses on rings
[2,3] reproducing the behavior of many chemical and bio-
logical systems. The well-known Belousov-Zhabotinskii
reaction [5] has stimulated significant theoretical interest
in patterns generated by a chemical reaction in a uni-
formly active liquid medium. Swinney's group developed
a ring-gel reactor that confirmed the generation of rotat-
ing waves by the coupling of diffusion and reaction [6].
Later, the Bordeaux [7] and Austin groups [8] developed
gel-strip reactors in which Turing patterns were formed
by the interplay of a chemical reaction and diffusion.
Ertl's group [9] found a variety of spatiotemporal pat-
terns on Pt single crystal surfaces during the low pres-
sure, isothermal catalytic oxidation of carbon monoxide.

It is of intrinsic interest and practical importance to
know how the spatiotemporal patterns observed in homo-
geneous media are modified and distorted in an inherently
nonuniform media. So far, the only patterns observed
on polycrystalline catalysts were of temperature waves
emanating from one or several locally active sites [10-
12]. Moving temperature fronts and pulses were ob-
served on electrically heated catalytic wires and ribbons
[13-17]. However, analysis [18,19] shows that without
electrical heating these temperature fronts would have
been unstable in at least some of these experiments.

We report here the first observation of a regular spa-
tiotemporal pattern on a polycrystalline catalyst that is
not heated electrically; i.e. , rotating temperature waves
propagating azimuthally on a polycrystalline nickel ring
(3.8 cm outer diameter, 3.2 cm inner diameter, 0.13 mm
thick) during the atmospheric oxidation of hydrogen in a
reactor (Fig. 1) fed with a mixture of 5% oxygen and
95% hydrogen. In the experiments reported here, the
average residence time of the gases in the reactor was
6.6 s.

The instantaneous local infrared radiation intensity of

points on the nickel ring was measured by a thermal im-
ager (A(sEMA Thermovision 780). Spatial resolution
was about 0.3 mm, while the thermal resolution was
about 0.5 C. The imager scans the surface 25 times per
second, producing a thermal image of 128 columns of 64
points. The data are displayed in real time on a color TV
monitor, digitized, and stored on a hard disk. The cata-
lyst was activated by repeated oxidation-reduction steps
at 450 C, as described by Kurtanjek, Sheintuch, and
Luss [20].

Experiments conducted at a feed gas and oven temper-
ature of 233 C revealed a rotating temperature pulse
with a period of 565 s. Figure 2 shows six thermal im-
ages of the ring at different times, with the white area
denoting high temperatures and the black denoting low
temperatures. The gradual transition from white to black
covers in this case a temperature range of 255 to 390'C.

OR

NICKEL RING
SAPPHIRE
WINDOW

GAS ~
INLET

. ' ~ S ~

~ ~

THERMOCOUPLE ALUMINUM REACTOR

FIG. l. Side view of the cylindrical (7.6 cm inner diameter
by 3.8 cm high) aluminum reactor, which has a 0.32 cm thick
sapphire top. The ring was held parallel to the top by four fine
thermocouples (0.025 cm) looped through small holes in the
periphery of the ring. The reactor was fed via four evenly
spaced radial ports and exited through four similar ports posi-
tioned 1.3 cm below the inlet ports and shifted aside by 45'.
The effluent composition was measured by a mass spectrometer.
Tracer experiments showed that the mixing by the jets pro-
duced a residence time-density function very close to that of a
continuously stirred tank reactor. The reactor was placed inside
an oven to control its temperature.
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pulse on a ring may serve as a useful model system for
testing the difference in the dynamic motion in a uniform
and nonuniform media and as a guide in the development
of mathematical models predicting the behavior of such
systems.

We acknowledge helpful discussions with M. Graham
and M. Sheintuch. This work was supported by the Na-
tional Science Foundation.
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FIG. 5. Temperature profiles corresponding to times of 420 s

(I ) and 140 s (2) in Fig. 4. The pulse center is at angular posi-
tions at 165 (I) and 335' (2). Profile I has the highest peak
temperature of any pulse and the longest temperature front.
This pulse occupies essentially the ~hole ring. Profile 2 has a
long uniform high-temperature section but is the shortest pulse,
occupying only one-half of the ring length.

ature and length, occupying essentially the whole ring.
Profile 2 corresponds to t =140 s and an angular position
of 335 . Here, the pulse attains minimal length and am-
plitude, occupying only about half of the ring. However,
it has a long uniform high-temperature section. The tem-
peratures of the low-temperature section of profiles 1 and
2 differ by about 15 C. The difference between the peak
and lowest temperature on the ring is about 130 and
85'C for profiles 1 and 2, respectively. We believe that
these periodic changes in the pulse features with azimu-
thal position are due to the nonuniform catalytic activity
of the ring.

The observation of a rotating temperature pulse on a
polycrystalline surface at atmospheric conditions suggests
that other and more intricate spatiotemporal patterns ex-
ist on the surface of commercial catalysts. It is important
to gain an understanding of the chemical reactions,
operating conditions, and catalyst geometries that gen-
erate such spatiotemporal patterns, and of the impact of
the nonuniform catalytic activity on these patterns. It is

of particular importance to gain an understanding of the
impact of these spatiotemporal patterns, and in particular
if they may lead to a product distribution which is not at-
tainable on a uniform catalytic surface. The rotating
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