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Brillouin Limit and Beyond: A Route to Inertial-Electrostatic Confinement
of a Single-Species Plasma
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The physics limiting the density of a cold non-neutral plasma is presented. It is shown that when a
Aow has no strain, the instantaneous maximum number of charges that can be stored within a fixed
boundary is equal to the total magnetic field energy within divided by the relativistic rest energy of a sin-

gle charge. A higher limit can be supported by the presence of a deviatoric strain in the flow. Brillouin
flow equilibria with arbitrarily high values of the Brillouin ratio, leading to the possibility of pure
inertial-electrostatic confinement of non-neutral plasmas, are demonstrated.

PACS numbers: 52.25.WZ, 52.55.0y, 52.55.Lf, 52.55.Mg

I t is well known that one-species plasmas can be
confined virtually indefinitely by a uniform magnetic field
in a state of uniform density corresponding to a cylindri-
cally symmetric thermodynamic equilibrium [1]. We
shall refer to the ratio of relativistic rest energy density to
magnetic energy density as the Brillouin ratio. The limit
on this ratio, the Brillouin limit, has received scrutiny
over the years [2]. The interest in such plasmas extends
to other fields, in particular, that of astrophysics [3].

In the first portion of this Letter, we show that the nine
components of the velocity strain tensor, tI;vj. , divide nat-
urally into three separate classes according to their efIIect

on the stored plasma density; namely, the compressive
strain, V v, the three components of the vorticity, V& v,
and the five components of the deviatoric strain, 6;v~
+ t)J v; ——', 6;~V. v [4]. (We use the convention that
l)t, = )/tax )kWith this insight, in the concluding portion
of this Letter, we construct Brillouin How equilibria that
possess arbitrarily high Brillouin ratios, leading to the
possibility of pure inertial-electrostatic confinement
(IF.C).

The fundamental equation we employ is the force-
balance equation for the cold single-species plasma:

V2—to —to. Q8+V +v [V(V v) —V v].

(In nonrelativistic, non-neutral plasmas, the Coulomb
force dominates any Lorentz force due to self-generated
magnetic fields by a factor of order c /v . Therefore, in
marked contrast to the physics of quasineutral plasmas,
plasma diamagnetic eAects are negligible; i.e., the mag-
netic field may be taken to be the externally imposed
one. ) We assume that the plasma remains confined
within a fixed, stationary boundary at all times, so that on
the boundary v n =0. Utilizing this condition, we find

tI(V v)
Mp

Bv(r t) 1 2 qE(r t)

+v(r, t) x [ro(r, t)+ QH(r, t)],
in which ro(r, t) is the vorticity, Vxv(r, t), and Q8(r, t)
equals q B(r, t )/m [with B(r, t ) the magnetic field], and
the charge and mass of the confined species are specified
by q and rn, respectively. The electric field is represented
by E(r, t). Defining the square of the local plasma fre-
quency by to~(r, t)=—q n(r, t)/rom, where n(r, t) is the
number density and eo is the electric permittivity of free
space, we take the divergence of Eq. (1):

r

j ' —co —to Q +V2 3 —' — 2 L'

p ~ B
2

—v V v —(V.v) Jd r.

Defining the tensor d;~(r, t) by d;~(r, t)—= 8;v~(r, t), this can be reexpressed as

J top(r t)d r =J [d&k(r, t)dt, ~(r, t) —
e;Jgd~t, (r, t) Q8;(r, t) —dkk(r, t)d~j. (r, t)]d3r. (2)

Throughout this Letter, we use the Einstein summation convention that repeated indices are summed on. The third-
rank e tensor is the totally antisymmetric Levi-Civita tensor. We employ a representation obtained as the Kronecker
product of the gradient vector operating on the velocity vector. In this representation, the basic vector d, satisfying

v Vxv 2t)xvx t)yves tlzvz tlyvy tI v tI&v +tI vz tI vx+Bxv tl„v&+6&v

, W3 J2 J6 J2 &2 J2 J2
(3)

has nine linearly independent components related to the nine tensor elements, d;z, by an orthogonal transformation. In
this representation, the nine-component tensor —e.

;~k Q8; is specified by the vector Q8 =(0, —&2Q8, 0,0,0,0,0). Hence,
Eq. (2) can be expressed equivalently in the more readily physically interpretable version,
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„' to~(r, t)d r = [d(r, t) M d(r, t)

+d(r, t) ntt(r, t)]d r, (4)

where the matrix M is diagonal in the chosen representa-
tion with the form

M~ =hJA~, X =(—2, —1, —1, —1, 1, 1, 1, 1, 1) . (5)

We have thus converted Eq. (2) to a simple diagonal
quadratic form.

Let us first suppose that the deviatoric strain corn-
ponents, i.e., the last five components of d, vanish. For
such a flow, the number density is maximized when

8& co~(r, t)d r = Sd(r, t) [2M d(r, t)+ ntt(r, t)]d r

=0.
This condition must hold for arbitrary variations and
thus, for all points r within the plasma volume, the fol-
lowing compressibility and vorticity conditions must be
met:

J3di(r, t) =V v(r, t) =0,
J2dz(r, t) =toi(r, t) = —ntti(r, t),
J2d3(r, t) =toz(r, t) = —ntt2(r, t)

J2d4(r, t) =to3(r, t) = —nti3(r, t) .

Inserting these conditions back into Eq. (4) and using Eq.
(5), we obtain the final result that

2fco~(r, t)d r~~,„ =1.fnt't(r, t)d'»

We have thus proved that when there is no deviatoric
strain, as in the case of thermodynamic equilibrium —a
state of uniform translation and rigid rotation, the max-

imum number of charges that can be stored at any in-

stant of time in the fixed bounding volume is equal to the
total magnetic field energy contained in that volume di-
vided by the relativistic rest energy of a single charge.
For a particular geometry, the physical upper limit actu-
ally may be lower.

With this heightened understanding, we now develop
hydrodynamic flow equilibria that exceed the Brillouin
limit. We consider a flow that (a) satisfies the Brillouin
flow criterion, i.e., co= —Ag, so that the flow is in-
compressible and satisfies V&m=0; and (b) possesses a
nonvanishing deviatoric strain tensor. Not only does the
first condition, along with the second condition, according
to Eqs. (3), (4), and (5), not lead to a diminution of the
density confined, but it prevents the nonvanishing devia-
toric strain of the second condition from producing any
viscous force, vV v, within the plasma. [Recall that
V v=V(V. v) —V&& ro] When finite viscosity effects are
considered, only a viscous force imbalance at the bound-
ary prevents the trapped non-neutral plasma from
remaining serenely in hydrodynamic equilibrium.

We construct such equilibria for a non-neutral
toroidally symmetric plasma whose confining vacuum
magnetic field B(r,z) is purely poloidal and satisfies

B(r,z) =VXA(r, z)8, V A(r, z) =A(r, z)/r

The first condition is met by setting

v (r, z ) = —(q/m )A (r, z )8.

(6)

(7)

Inserting Eq. (7) into the equilibrium case of Eq. (1), we

easily observe that
2

E(r,z) = VA'(r, z), top(r, z) = V'A (r, z) .
2m

' ' '
2 gyes

(8)
Now we can evaluate the Brillouin ratio in terms of the
vector potential using Eqs. (6) and (8):

2pomc n(r, z)
B (r,z)

2 top'(r, z )
ntzt (r,z)

V A (r, z) + [BA(r,z)/itr —A(r, z)/r] + lrlA(r, z)/Bz]
B (r, z) [8A (r, z)/Br+A (r, z)/r] + [BA (r,z)/Bz]

(9)

One immediately notes that this ratio will exceed the
value of 2 wherever

1 |1A (r,z)
r Br

(10)

The 1/r is retained to emphasize that exceeding the value
of 2 requires a true toroidal geometry, excluding r =0.
We can relate the Brillouin ratio directly to the deviatoric
strain tensor s. We first define s;j. to equal 8;v~+8~.v;, or,
equivalently, —(q/m ) (8;A~ + BJA; ). We next observe
that for a vacuum magnetic field,

—,
' V'A'=(a;A, )(a;A, ) .

Using the Brillouin flow criterion and expressing the
magnetic field in a Cartesian coordinate system, we ob-
tain

B2=(g A )' —(a,A, )(e,A, ) .

Finally, we can solve Eqs. (11) and (12) for V A in

terms of the magnetic field and the deviatoric strain. In-

serting the result back into Eq. (9) yields the effect of the

deviatoric strain on the Brillouin ratio:

2pomc n(r, z) Tr[s2(r, z)]
B (r, z) 2na(r, z)

Since s is a symmetric matrix, this ratio will equal unity

only when all elements of s vanish, which transpires only

for flows consisting of nothing other than uniform
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translation and rigid rotation, the case of thermodynamic
equilibrium. Using Eqs. (11) and (12), it is also useful to
express the square of the deviatoric strain tensor in terms
of the magnetic field and the vector potential:

strength. Equations (6), (8), (13), and (14) then yield
the following expressions for B, E, and the Brillouin ratio
within the plasma,

m Tr[s (r, z)] =& 3 (r, z) —B (r,z)
2g

ro
B(r,z) =

r
r+2 z Bo,ro'

A (r, z)
r

' 2

A(r, z) = [(r —ro)z/r]Bo/rpt (14)

where Bo is some constant relating to the magnetic field

(a)
rillouin

2. 6
2. 4
2. 2

1.
0. rp

2. 4
2.2

To maximize the Brillouin ratio, we wish to minimize the
magnetic field strength. For a vacuum magnetic field, the
minimization is accomplished by constructing a field pos-
sessing an x point. We shall do so in two distinct ways.

In case I, we examine the neighborhood of a magnetic
x point located at r =ro, z =0. To do so, we set

2

E(r,z) = A(r, z) 1+
2

r+ I—qBO z &o . r
m I"0ro

2'~~~(r, z )

op'(r, z )
2pomc n(r, z)

B'(r,z)

ro2

2r

2[(r +rri)/r ]z +(r —rii) /r

4z +(r —r ) /r

A numerical evaluation of the Brillouin ratio near the x
point for this case is depicted in Fig. 1(a). The value of
this ratio at the x point is 2, just that value which was

first observed by Walker and by Poschl and Veith [5] as
the maximum value for the ratio in their studies of ellip-

soidal Brillouin Aow. In our example, one notes from the
figure that higher values than 2 can be attained. Indeed,
inserting Eq. (14) into Eq. (10), we see that such values

will be obtained whenever r & ro and z&0.
Another representative example is given in case II

where

Z/I'p 1

Hrr'Pf t t t
t
t t

r t
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FIG. 1. For case I: (a) The Brillouin ratio as a function of r
and z near the magnetic x point at r =ra and z =0; (b) the
magnetic field near the x point; (c) the "fictitious" electric field,
defined in text, near the x point. For case II: (d) The Brillouin
ratio as a function of r and z near the magnetic x point at r =rp
and z =0; (e) the magnetic field near the x point; (f) the "ficti-
tious" electric field near the x point. (The magnetic and elec-
tric fields are shown in arbitrary units. )

FIG. 2. A representative cross section of toroidal plasma lo-
cated at the x point of a magnetic field B, whose direction is
shown in this sketch by the lines with arrows. The shaded re-
gions are bounded by constant values of "fictitious" electric po-
tential ~ For the two cases of this paper, the two axes shown
demonstrate the orientation of the symmetry axis of the torus
with respect to the magnetic and electric field configuration of
the plasma confinement. In the corners, notice the quadrupolar
current source.
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B(r,z) = —r" + ln
r

where again Bp is some constant relating to the magnetic field strength. This case also has a magnetic x point located at
r =rp, z —0. However, the x point is rotated 45' clockwise with respect to case I [cf. Figs. 1(b) and 1(e)]. Proceeding
as we did in case I, we find within the plasma

Z Bp,

2p pmc n (r,z )
8'(r, z)

2cop'(r, z )
np'(r, z)

E(r,z) = A (r, z) ~ —ln
qBp
m 2

r

r 1 z rp . z.2 2

+ —+ — r —z ~,
rp 2 r 2r r

[In(r/rp)] +( 2 +z /r —rp/2r ) +2z /r

[]n(r/rp)] +z /r

A numerical evaluation of the Brillouin ratio in the
neighborhood of the x point for this case is shown in Fig.
l(d). As in case I, the value of this ratio at the x point is
2. Again one notes that higher values than 2 can be at-
tained. Of course, any other orientation of the x point
can be obtained from a linear superposition of the vector
potentials of cases I and II. (A lattice of these x points
can be created by considering sums of products of first-
order Bessel functions with exponentials of real or imagi-
nary argument, as appropriate. )

In Figs. 1(c) and 1(f), respectively, we have displayed
the "fictitious" electric field in the neighborhood of the
magnetic x point. By fictitious, we mean the field
E+(mutt/qr)r", which takes into account the fictitious
force on the flow. One observes that confinement of a
torus of plasma containing an x point requires the appli-
cation of a toroidally symmetric electric field having an
octupolar nature. This applied field, when superimposed
on the field emanating from the confined plasma, results
in the fictitious field depicted. The octupolar character
prevents plasma flow along the magnetic field. The x
point magnetic field configuration can be created by using
a toroidal quadrupolar current configuration outside of
the plasma. See Fig. 2.

To obtain an infinite value of the Brillouin ratio at the
magnetic x points, we must add a 1/r term to the toroidal
flow velocity, which vanishes at these points in the two
cases above. This addition will not compromise our two
conditions. But, it will make the trace of the square of
the deviatoric strain tensor nonzero at the x point and
therefore yield the desired infinite Brillouin ratio.

To best understand the infinite Brillouin ratio, we shall
take the extreme case in which the magnetic field van-

ishes everywhere. This is a case of inertial-electrostatic
confinement (IEC). Using the analysis of the first two

examples, we find within the plasma that

Cp0 C ptPZ
2

v(r, z)=, E(r,z) =-
r r

2 2 2 2

to& (r, z ) =
4 , 2

Tr[s (r, z )] =2 2cp pyg 2 c ply 4

r 2q q' r4

where cp is a constant. In order to confine a torus of plas-

i ma by this means, one must impose an external electric
field that both opposes the motion of the torus along the
axis of toroidal symmetry, as well as opposes any outward
radial expansion along the major axis of the torus. The
superposition of such a field with the field induced by the
toroidal plasma is that which is given within the plasma

by Eq. (15). It is both the multiply connected (toroidal)
as well as the non-neutral character of the plasma which

makes inertial-electrostatic confinement tractable.
In contrast to the well-studied equilibria of Penning-

trap-confined non-neutral plasm as, the hydrodynamic
equilibria analyzed in this Letter are not. thermodynamic
equilibria due to their nonvanishing deviatoric strain.
This lack of thermodynamic equilibrium is shared by all

magnetohydrodynamic equilibria of neutral plasmas and
is largely responsible for their intricate physics. The nov-

elty of the proposed confinement geometry (with the con-
comitant removal of the Brillouin limit condition on the
confined density) and the intricacy of the tapestry of
physics of neutral plasmas suggest that research to devel-

op methods to form these non-neutral equilibria, to study
their stability, and the eAects of finite temperature on

transport should prove amply rewarding in increased un-

derstanding of the physics of confinement of non-neutral

plasmas —with the possibility of derivative benefits for
the confinement of neutral plasmas.
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