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Soliton Solutions for Free-Electron-Laser Applications
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A new class of nonlinear traveling-wave solutions of the relativistic cold-fluid model are presented for
a system consisting of a relativistic cold electron beam propagating through a helical wiggler magnetic
field. The solutions, which are in the form of isolated soliton pulses of coupled electromagnetic and plas-
ma waves, are obtained numerically. They represent possible nonlinear saturated states of the free-
electron-laser instability and may also have useful applications in particle acceleration schemes.
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The free-electron laser (FEL), which generates coher-
ent electromagnetic radiation using an intense relativistic
electron beam propagating through a static transverse
magnetic field, has been the subject of several theoretical
and experimental investigations [1]. While many simple
model calculations exist to analytically estimate the
linear growth rate of the instability, very few calculations,
other than those dependent on large computer simulations
and numerical codes, have addressed the nonlinear devel-
opment and saturation of the instability. In particular,
there are no simple model descriptions of the nonlinear
saturated state. A notable exception is the work of Lane
and Davidson [2] where large-amplitude traveling-wave
solutions were obtained for the nonlinear Vlasov-Maxwell
equations. These BGK (Bernstein-Greene-Kruskal) type
solutions are stationary in a frame of reference moving
with the ponderomotive phase velocity. An interesting
question that arises is whether there are simpler fluid
analogs of these BGK type solutions, especially finite
pulse solutions like solitons. To the best of our knowledge
such solutions have not been found for the one-
dimensional relativistic cold-fluid model of the FEL, al-
though the model has been extensively employed for
linear calculations. This is somewhat surprising since
traveling-wave solutions (including soliton solutions) of
the cold-plasma model have been widely investigated in
the context of the nonlinear theory of intense laser-
plasma interactions [3-6]. A possible reason for this la-
cuna in the FEL problem could be the complexity intro-
duced in the fluid model by the presence of the beam and
the wiggler field which make a traveling-wave analysis
somewhat difficult. In this Letter we carry out such an
analysis and find that soliton solutions do indeed exist for
the one-dimensional cold-fluid model of the FEL. Our
findings are based on numerical solutions of the relativis-
tic fluid equations modeling the nonlinear evolution of
perturbations to a relativistic cold electron beam propa-
gating through a helical magnetic wiggler. The solutions
are in the form of isolated soliton pulses which occur with
a discrete velocity spectrum. This new class of traveling-
wave solutions, consisting of intense light pulses coupled
to large-amplitude plasma waves, represent possible sat-

urated states of the FEL. They might also form interest-
ing candidates for particle accelerator schemes like the
inverse free-electron laser [7] in which the large electro-
static potential of the plasma wave may be used to get
significant acceleration of electrons.

We begin with a brief discussion of the relativistic
cold-fluid model that has been previously developed by
Davidson, Johnston, and Sen [8] for describing the non-
linear evolution of the free-electron-laser instability. For
a relativistic cold electron beam of uniform density prop-
agating in the z direction through a helical wiggler mag-
netic field B@(x) = ——é[cos(koz)éx+sin(koz)éy], the
cold-fluid equations consist of the continuity equation
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where y=(1+p2/m??)'? is the relativistic factor, and
p. is the longitudinal momentum. Note that for one-
dimensional variations (in z) the symmetry of the prob-
lem permits elimination of the transverse momentum by
the exact integration p, =eA/c, where A is the total vec-
tor potential. The electrostatic potential ¢ can be elim-
inated from (2) by a further differentiation in time and
making use of Poisson’s equation and the z component of
Ampere’s law, to get
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The evolution of the transverse electromagnetic perturba-
tions are given by the inhomogeneous wave equation
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Here 7o, Ao, po, and w2o=4me’no/m denote unperturbed
values due to the wiggler magnetic field and the beam. In
(3) and (4) the nonlinear terms consist of the striction
(n/ng) and relativistic (y) nonlinearities. The latter
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arises from the increase of mass of the electron due to its
relativistic quiver motion in the high-frequency field. The
consequent decrease in the plasma frequency increases
the local refraction coefficient leading to increased con-
centration of the high-frequency field. The strictional
nonlinearity arises from the ponderomotive force which
also causes a redistribution of the plasma density. In this
case, however, the plasma concentration increases in the
region of high field intensity thereby decreasing the local
refraction index. Thus in the cold-plasma model these
two nonlinearities oppose each other [3,4] and their com-

istic nonlinearity has to overcome the unfavorable tenden-
cies of the striction effect and push electrons out of the
high-field region. The pressure of this high-field region is
then balanced by the electrostatic restoring force arising
from the local expulsion of the electrons. To investigate
such solutions it is convenient first to transform Eq. (4) to
the so-called wiggler coordinates defined by

€1=cos(koz)é, +sin(koz)é, ,

€= —sin(koz)é +cos(koz)é, , (5)

~

petition determines whether solutions of the soliton type €3 =6
are possible. For a soliton to form, the favorable relativ- The components of Eq. (4) in the new coordinate system

take the form

2 ., 1 92 3642 _ who | n4, 4@
O k- =2 (84, -2k = - :
9z2 PR YR : Y c? | noy Yo
(6)
92 2 1 9?2 064, wgo nAd,
2 kg2 54,2k = :
[622 ko c? or? : * oz c? noy

We now make the traveling-wave ansatz that all the dynamical quantities depend on z and ¢ through the combination
&=z —ut, where u =const is the signal speed. In the wave frame the continuity equation can be readily integrated to
give
n _ B—Bs)y
no  (yB—p3)’
where B=u/c, By =Vo/c, and p3=p,/mc. Using (7) and some straightforward algebra it is now possible to reduce
(3),(6) to a set of three coupled nonlinear differential equations for the variables py, p2, and Z =pp; — y:
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where the overdot denotes d/d{ and the normalizations are @&, =w./cko, ®p =wp/cko, {=ko&, and ps=ps/mc with
a=1,2,3. Equations (8)-(10) are the final set of coupled equations that we must solve for studying the nonlinear evolu-
tion of the FEL. These equations exhibit many similarities to, and important differences from, traveling-wave equations
studied in the past for intense laser-plasma interactions [3-6]. The most striking difference is the inhomogeneous term
in Eq. (8) for the p; oscillator, which results from the presence of the wiggler field. The S contribution arises from the
beam velocity. These equations admit one exact integral of motion which may be written as

=L1B2=1)(pi+p)+Z+W(p,,p2,Z) =const, an
where
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The equilibrium solutions (d/d{=0) of (8)-(10) are given by po; =d. o, p2=0, and Zo=7y0(BBs —1). A small-signal
analysis around the equilibrium yields a traveling-wave dispersion relation [8] which can be formally related to the fa-
miliar cold-fluid normal-mode dispersion relation for a helical wiggler FEL. As shown in Davidson, Johnston, and Sen
[8], the FEL instability corresponds to the condition 8 < B, <1. We note from (11) that in this case the problem is
similar to a Hamiltonian of coupled anharmonic oscillators with three degrees of freedom (p,p2,Z) where the effective
mass for two of the anharmonic oscillators is negative. In general there can be a rich variety of solutions including

Wp1,ps,Z) =1 (pi+p3)+ [B2— 1)U +pt+pd)+22]'2+ Z—dcyop(1+62) . (12)
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FIG. 1. Profiles of (a) 8p1, (b) 8p2, (c) 8Z, and (d) n/noy for
a soliton pulse with $=0.5, y =10, &, =0.5, and &, =0.501935.

infinite wave trains, solitons, and even aperiodic chaotic
solutions [9].

Our primary interest is to investigate soliton solutions
for which we have solved Egs. (8)-(10) numerically and
looked for solutions that decay exponentially as ¢
— oo, We find that such solutions do indeed exist and
occur for discrete values of @, and B. In other words, for
a fixed value of B (and @&, and yo) finding soliton solu-
tions turns out to be an eigenvalue problem in @,. The
sizes and shapes of these solitons also vary as a function
of @,. Figure 1 shows a typical soliton solution for
B=0.5, &.=0.5, yo=10, and &, =0.501935. Typically
the 6Z =(Z — Z,) profile [Fig. 1(c)] has a characteristic
bell shape, whereas 8p; =(p, —po;) [Fig. 1(a)] and &p,
[Fig. 1(b)] have a number of nodes. The n/noy profile
[Fig. 1(d)] shows that the density is reduced in most of
the soliton region but piles up at the edges. This suggests
that physically these solitons correspond to trapped light
bubble solutions in the beam fluid, in which standing light
waves are set up in an “‘effectively empty’ cavity. We see
further evidence of this as larger-amplitude solitons ap-
pear with increasing @, (keeping other quantities fixed).
These solitons have a larger spatial extent in { and ac-
commodate larger units of the standing-wave pattern in
them. Table I lists some of the eigenvalues (of @p) at
which solitons appear for =0.5 and their maximum am-
plitudes in Z. Similar discrete spectra of solitons can be
obtained at other values of B as well (as long as B < ).
These solutions therefore constitute a new class of non-
linear stationary solutions for the FEL which can be
viewed as fluid analogs of the BGK type solutions. Un-
like the kinetic solutions where particle trapping effects
play the dominant role, the saturation mechanism here is
quite different and results from the nonlinearities due to

788

TABLE I. Characteristic plasma frequency (&,) and soliton
amplitude (6Z max) for $=0.5, &, =0.5, and y=10.

Dp 0.5019 0.5118 0.5138
07 max —6.079 —18.74 —31.25

0.5151
—71.98

striction and relativity effects. When their combined
effect is favorable, in the sense of increasing the local re-
fraction index, they can cause a trapping of the elec-
tromagnetic wave in a plasma wave excited in the beam
due to bunching of the beam density. The pressure of the
trapped electromagnetic wave is supported by the space
charge electrostatic field of the plasma wave. Since the
electrostatic field plays an important role in the formation
of the soliton, these solutions can only occur in the Ra-
man regime where collective effects are significant. The
typical time scale for the development of these soliton
solutions is related to the characteristic evolution times of
the nonlinearities involved in the process. Both the rela-
tivistic and striction nonlinearities develop on the collec-
tive electron response time scale [5], w, ', and the typical
growth rate I' for the FEL instability in the Raman re-
gime is approximately w.(d,/y)'"> whose value is a frac-
tion of w, and approaches w, at high wiggler amplitudes
[1]. The time for an initial potential perturbation 8¢; to
grow to an amplitude 8¢, can thus be approximated as
t;= (1/T)In(8¢,/5¢;). From Poisson’s equation, &¢;
~4nel 25n;, where L, is the spatial dimension of the soli-
ton and én;/n can be approximately taken as =1/
(nL3) "2 for random noise level initial fluctuations. For
solitons we need e6¢f/mc2~1. Using these conditions
and for typical values of the soliton solutions we get ; to
be of the order of a few plasma periods. For solitons to
have enough time to form in the device, ¢; should be less
than L/cBp (the transit time of the electrons through the
amplifier-oscillator device of length L), i.e., Lko
>ﬂ;,cf),,_'. Since By ~1 and Lky>>1, this condition can
be easily met in the Raman regime.

To conclude, we have obtained soliton solutions for the
first time in the context of the free-electron laser. These
one-dimensional nonlinear traveling-wave solutions have
been obtained by a numerical solution of the relativistic
cold-fluid model equations and are in the form of isolated
pulses of coupled intense electromagnetic and plasma
waves. We suggest that this new class of solutions can
have a large number of applications. They could provide
simple model descriptions of the nonlinear saturated state
of the free-electron instability in the Raman regime. The
possibility of obtaining large electrostatic fields also
makes them interesting from the point of view of particle
and photon accelerators. The inverse free-electron laser
is one such scheme where the large electric fields of the
soliton solutions could in principle be used to transfer en-
ergy from a laser to a relativistic electron beam in the
presence of the magnetic field of an undulator.
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