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Non-Gaussian Distribution in Random Advection Dynamics
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A discrete model of random transport is analyzed both numerically and theoretically. Non-Gaussian
fluctuations are always realized when a finite portion is transported at a time. Gaussian and power-law
fluctuations appear in extreme limits.
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In the study of statistical physics for nonequilibrium
systems, the deviation from the Gaussian distribution has
been the central issue. We expect the existence of univer-
sal mechanisms for producing non-Gaussian distributions;
however, our knowledge is still at the elementary level.

A typical far-from-Gaussian distribution may be a
power law. As a result of the scale invariance or fractali-
ty much attention has been paid recently to power-law
distributions. Power-law distributions are known to ap-
pear at the critical point of a second-order phase transi-
tion or at a self-organized critical state [1]. Irreversible
particle aggregation processes also tend to produce
power-law distributions, as rigorously known in the ag-
gregation system with injection [2]. A mathematical
theorem of stable distributions tells us that power-law
distributions can also be realized by simple summation of
independent random variables with divergent variances
[3].

Non-Gaussian distributions are especially important in

Iluid turbulence [4]. The latest technique of direct obser-
vation of turbulence [5] and also numerical integration of
the Navier-Stokes equation [6] are clarifying the details
of the non-Gaussian nature of the fluctuation of the ve-

locity field. A remarkable result is that the distribution
of velocity difference, Sv=v(x) —v(x+r), for example,
shows tails which are much larger than those of Gaussian
distributions but still much smaller than power laws.
Scalar quantities in turbulence such as temperature are
also known to follow non-Gaussian, non-power-law distri-
butions [7]. Namely, a typical distribution in turbulence
is between Gaussian and a power law.

In this paper we introduce a simple model of random
transport which can be regarded, in a limit, as a model of
passive scalar transport by random advection. We show
that the fluctuation of the scalar quantity is generally not
Gaussian, and the tail of its distribution is between
Gaussian and a power law. Gaussian and power-law dis-
tributions appear only in extreme situations.

We consider scalar variables on a discrete space-time,
co(r, t) Aportion of co(r, t) is. transported randomly to
another site at a time described by the following stochas-
tic equation:

co(ro, t+At) =co(ro, t) —j (ro, t)co(ro, i)

+QS(ro, r, t)j (r, t)co(r, t),

where j (r, t) is a random number in the range
0~j (r, t) ~ 1 and S(ro, r, t) is also a random number
which takes the value of either I or 0. S(ro, r, t) = I

means that there exists transport from r to ro at time step
t. In order to conserve the total quantity 0 =P,co(r, t),
we require that S(ro, r, t) equals I for only one rn for
each r. Here, we allow the possibility of S(r, r, t) = I,
which means no transport.

In the case that transport is restricted to neighbors and

j (r, t) is close to 0, the variation of co(r, t) is expected to
be smooth and Eq. (I) is approximated by the diffusion
equation

co(r, t) =DAco(r, t),c)

Bt

in the continuum limit. Here, the diAusion coefticient D
is proportional toj (r, t)/At (At is the time step).

In the other extreme case when j(r, t) =1, Eq. (1) de-
scribes irreversible aggregation phenomena; for example,
in the case where co(r —l, t) moves to the rth site keep-
ing all other sites unchanged, we have co(r, t +At )
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FIG. l. Exact mean-field values of higher-order cumulants
(co"), normalized by the variance. + for the mean-field model;

j =0.1, 0.7, and 0.9, from bottom to top. The exponential dis-
tribution is shown for comparison (0).
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=co(r, t)+co(r —l, t) and co(r —l, t+t)t) =0. Namely,
for 0 &j (r, t) & 1 Eq. (1) generally represents both
diffusion and aggregation effects. In the following
analysis, to avoid unessential complexity, we assume that
all j (r, t) take a constant value j (0 &j & 1), and observe
how the system changes for different values of j.

We start our study with a mean-field version of Eq. (1)
to estimate the effect of the finite-portion transport
theoretically. We consider the situation that a site is in-
teracting with a mean-field site and transports to or from
the mean-field site occur with probability 2, indepen-
dently. In this situation the stochastic Eq. (1) becomes

Y —Y„
Y„+1

—Y„=2
3 —Yn

(5)

Supposing that n can be a continuous number, we ap-
proximate the left-hand side by a derivative dY/dn
Then Eq. (5) can easily be integrated and we have the
following cubic equation for Y(p) with the normalized
mean value (co) =1:

random transport dynamics.
In the special case of j =

2 we can estimate the
steady-state functional form of Y(p) as follows. By
denoting Y„=Y(p2"), Eq. (4) becomes

co(t), Prob —,',
(1 j)co(—t), Prob —,',

co(t+to) = '
co(t)+jcoM, Prob 4,
(1 j)—co(t)+ jcol, Prob 4,

(3)
Y(p) ee p

—2/3 (7)

p Y(p) + [Y(p) —I ] ' =0,
which can be solved explicitly by Cardano's formula.
The asymptotic behavior for p ~ is given as

where co~ is the value at the mean-field site which is
defined as an independent random number having the
same distribution as co(t). By introducing the charac-
teristic function

Y(p, t) = e'~"P(co, t)dco,

where P(co, t) is the probability density for co at time t,
Eq. (3) becomes

Y(p, t+ At ) =
4 fY(p, t )+ Y(p pj, t )) f1 +—Y(pj, t )I .

Taylor expansion of Eq. (4) in terms of p gives a set of
equations for the moment functions f(co")], and it can be
easily shown that a nontrivial steady state exists when
(co)AO, i.e., 0%0. In the case (co) =0 we will show later
that the only steady-state solution is P(co) =8(co); that is,
no fluctuation remains.

The steady-state solution for (co)AO is obtained with
the aid of algebraic calculation by computer. In Fig. 1

we plot the cumulants for orders up to 7 together with
those for a one-sided exponential distribution for compar-
ison. Higher-order cumulants are not zero in any case
and show a tendency to diverge as the order goes to
infinity, which clearly demonstrates that the steady-state
distribution is not Gaussian.

For smaller j the cumulants are smaller, and in the
limit ofj 0 it can be shown theoreticall that the nor-
malized cumulant of order n, (co"),/(co ),",vanishes for
n ~ 3. Namely, the distribution converges to a Gaussian
in this limit, which agrees with the well-known fact that
the distribution function satisfying the usual diffusion
equation in the continuum limit is a Gaussian. This re-
sult indicates that the finiteness of j is very important for
the appearance of the non-Gaussian distribution in our
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FtG. 2. Semi-logarithmic plot of the steady-state cumulative
distributions, P(&. co) =J„P(co')dco', in one dimension with
(co) & 0. The values of j are 0.3 (thin line), 0.5 (bold line), and
0.9 (dotted line). Averages are taken over ten realizations.

This power-law decay is very different from the case of a
Gaussian distribution where the characteristic function
decays faster than any power of p. In the case of an ex-
ponential distribution the characteristic function is given
by 1/(I+ip) (asymmetric case) or 1/(1+p ) (symmetric
case), which also shows a power-law decay as p ~. In
this sense the distribution is far from Gaussian, but is
similar (but not identical) to the exponential distribution.

N umerical simulations are performed on a one-
dimensional lattice with nearest-neighbor transport. A
typical system size is 10 and the boundary condition is
periodic. Figure 2 shows the steady-state cumulative dis-
tributions for j =0.1, 0.5, and 0.9 in semilogarithmic
scale. Here, the initial values for (co(r, O)f are positive
and given randomly. Quite similar results are obtained
with other initial conditions, for example, co(r, O) =const,
so the steady state is expected to be independent of the
initial conditions. For j =0.1 the tail of the distribution
decays quickly like a Gaussian, and for larger j the tail
becomes larger as estimated by the mean-field analysis.
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FIG. 3. Log-log plot of the steady-state cumulative distribu-
tion in one dimension with (co) &0. The values of j are 0.9
(thin line), 0.99 (bold line), and 0.999 (dotted line). The slope
of the straight line is —

3 .

(co'(t+at)) =(1 j+j ')(co'(t)) . — (8)

As known immediately from this equation the variance
decays exponentially to zero for 0 &j & 1, which shows
that the only steady state is the trivial state, P(co)
=6(co), as we mentioned previously.

The system becomes nontrivial if we apply random
external fluctuations. Namely, we add a new term, I(r, t)
in Eq. (1) or 1(t) in Eq. (3), which is a random variable
having zero mean, (I) =0. Accordingly a new term (I )
is now added to Eq. (8) and the variance converges ex-
ponentially to a finite value. The same argument holds
for every moment of co, (co"), so we have a nontrivial
stable steady distribution P(co).

Numerical results are shown in Fig. 4. Here the trans-
port is long ranged, i.e., the probability of S(ro, r, t) =1 is
independent of ro for each r. For small j the distribution
is close to a Gaussian as typically shown in the case of
j=0.3 in Fig. 4. For larger j the tails become larger as
seen in the case of j =0.8, and as j 1 the distribution
converges to Lorentzian tails, P(co) ~ ~co~ (see the case
of j =0.99). This result is reasonable since the case of
j =1 is equivalent to the aggregation system with injec-
tion [2].

To see the asymptotic behavior of j 1 we plot the cases
of j=0.9, 0.99, and 0.999 in log-log scale in Fig. 3. The
steady-state distribution gradually approaches a power
law P() co) ee co 't . This power-law distribution is

known to be the exact solution of the aggregation limit

j =1 in the presence of positive injection from outside [2].
In our simulation we have no injection; however, in the
case that j is close to but not equal to 1, the small portion
left behind at every transport, (1 j)co(r—, t), may play
the role of injection while the dominant eAect is the ag-
gregation process, and then the system can realize a near-
ly power-law steady state.

Next, we consider the case of (co) =0, i.e., 0 =0. The
second-order term of p in the mean-field equation, Eq.
(4), gives the following equation for the variance of co,

FIG. 4. Semilogarithmic plot of the steady-state probability
density P(co) in the long-range transport case with (co) =0.
Random perturbations in the range [ —l, l] are added constant-
ly (the sum of perturbations is controlled to be zero). The pa-
rameters are j=0.3 (dotted line), j=0.8 (bold line), and
j=0.99 (thin line). The smooth curves show the Lorentzian
tails, P(co) ee co

An unexpected behavior is found in one dimension with
nearest-neighbor transport. When no injection is added
to the system of (co) =0, the variance converges quickly to
0 as predicted by the mean-field analysis; however, when
we add injections of (I) =0 the variance (co (t)) does not
converge to a finite value but shows a tendency to diverge.
This strange behavior may be caused by the peculiarity of
one dimension, like the segregation phenomenon [8], but
the details are yet to be clarified.

In the case that the variance vanishes or diverges, we
have no steady fluctuation, but we can observe a snapshot
of fluctuations at a finite time. It is confirmed numerical-
ly that in any case of (co) =0 the distribution of co con-
verges if it is normalized by the square root of the vari-
ance, (co (t))'t . The functional form of the converged
distribution is very similar to that of Fig. 4; namely, it is
close to a Gaussian for small j, the tails become larger for
larger j, and for j very close to 1 the tails nearly follow
power laws.

Summarizing the results, we introduced a model of
random transport and found that non-Gaussian distribu-
tions always dominate if a finite portion is transported at
a time. A Gaussian distribution is realized only in the
limit of infinitesimal transport. In the other limit that
nearly the entire portion is transported at a time, the dis-
tribution shows a long tail close to a power law which is a
typical distribution in aggregation phenomenon. We
have analyzed only the mean-field and one-dimensional
cases; two- and three-dimensional cases are to be ana-
lyzed in the near future.
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