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Self-Organization Induced by the DifFerential Flow of Activator and Inhibitor
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We have experimentally verified the prediction that a homogeneous steady state of an activator-
inhibitor system can be destabilized by a differential Row of the key species, rather than by their dif-

ferential diffusivity as for the Turing instability. Traveling waves are generated by a fiow of Belousov-

Zhabotinsky reactants through a tube containing ferroin immobilized on a cation exchanger. Without
How the system resides in a homogeneous steady state. This mechanism of spatiotemporal pattern
formation avoids the restrictions of the Turing instability on the diffusion coefficients and can thus

be expected to operate in a larger class of chemical, physical, and biological systems.

PACS numbers: 47.20.Ky, 05.70.—a, 82.20.—w

The homogeneous steady state of a reactive system
may lose its stability and form so-called Turing patterns
[1, 2], provided two conditions are fulfilled: First, the
kinetic system must contain an activator (e.g. , autocat-
alytic) species and an inhibitor, whose function is to limit
the autocatalytic growth. Second, the diffusion coeK-
cient of the inhibitor must exceed that of the activator to
an extent which allows the activator to grow locally while
lateral inhibition prevents the spread of growth [3]. The
primary role of diffusion in the instability is to spatially
disengage the counteracting species. The mechanism is
fundamental to biological morphogenesis [1,3 and it may
operate also in a variety of physical systems [4].

We have recently suggested an alternative way of dis-
engaging the key species by a differential bulk flow [5].
In this case the homogeneous steady state of the system
may be destabilized by flows of activator and inhibitor
at diferent flow rates, regardless of which one is faster.
This makes the mechanism free of the Turing restrictions
on the diffusion coeKcients and thus much more general.
We re&. to the mechanism as the differential flow induced
chemical instability (DIFICI).

Here we report the first experimental verification of
the DIFICI and the resulting wave patterns in the fer-
roin catalyzed Belousov-Zhabotinsky (BZ) system in a
quasi-one-dimensional flow tube. The ferroin ion is im-
mobilized on a cation-exchange resin [6] that is packed in
a vertical tubular reactor, while the remaining reactants
flow through the tube, as in a chromatographic column.
The experimental setup is shown schematically in Fig. l.

We used Dowex 50X4-400 ion-exchange resin (in the
form of beads of approximate size 40 pm) and Aldrich
chemicals. The 2M stock solution of bromomalonic acid
was prepared at O'C according to Ref. [7]. Before being
loaded with ferroin, the ion exchanger was washed 5—7
times. Each time after the main part of the beads had
settled, the translucent liquid fraction was decanted. Ul-

timately, the beads settled relatively quickly, leaving the
supernatant liquid transparent. This suggests that the
size distribution of the remaining beads was fairly nar-
row. Then the suspension of the ion exchanger in water

was transferred into a measuring cylinder and when the
beads had settled, the volume they occupied was deter-
mined. This volume was the reference value for the load-
ing with ferroin instead of the weight of the beads used

by other authors [6). Normally, we loaded 10 moles of
ferroin per liter of the ion-exchanger suspension. Assum-

ing that the beads were identical spheres and that they
packed densely one could estimate the free volume occu-
pied by the flowing solution as 30%%uo of the total volume.
Accordingly, the ferroin concentration averaged over the
reacting volume should be taken 3 times higher than that
averaged over the total volume. Therefore, in our calcu-
lations we used 3 x 10 M as the concentration of ferroin.

The loaded beads were then mixed with the solution
of the other reactants and the larger part of the mix-
ture was transferred to the tubular reactor (Fig. 1). The
rest were poured into a Petri dish (depth of 1 mm beads,
10 mm liquid) for a reference experiment. As shown in

Fig. 1, the beads filled the flow tube and part of the

Nq

FIG. 1. Scheme of the experimental setup. The internal
diameter of the glass tube is 3.2 mm, the length of the tube
is approximately 25 cm, and the diameter of the reservoir is
25 mm. Designations: RV, regulating valve; FD, fritted disk;
S, stopcock; P, pressure gauge.
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reservoir. The latter portion of beads served as a sec-
ond reference. A fritted glass disk prevented washout of
the beads. The flow could be arrested by a stopcock.
The flow rate was controlled by applying compressed ni-

trogen gas, and the flow was assumed proportional to
pressure. To interpret our experiments unambiguously,
efforts were made to avoid the regimes in which the
system showed either oscillatory or pacemaker activity.
Therefore, the experiment was discarded if this sort of
activity was discovered either in the Petri dish or in the
wide top of the column. We used mostly the sets of pa-
rameters [HqSO4] = 0.02M, [Fe(phen)s] = 1 x 10 4M

(averaged over the total volume, as descibed above)
and (a) [NaBrOs] = 0.8M, [BMA] = 0.4M, and (b)
[NaBrOs] = 1.5M, [BMA] = 0.5M. Using malonic acid
instead of BMA resulted in a poorer color contrast and
reproducibility. Typically, one experiment lasted 0.5—2
h.

When pressure was applied, pale blue waves were ob-
served that propagated along the tube in the direction of
the flow. The waves were recorded on videotape, and the
images were then processed on a computer to enhance
contrast;. Figure 2 is composed of five frames taken at 20
sec intervals at the relative time indicated. The length
and velocity of the waves were measured as functions of
applied pressure. The length was measured by apply-
ing a ruler to the tube. The velocity was determined by
the time needed by a wave to pass the distance between
two succesive distance markers (5 cm). The time interval
was measured with a stopwatch. Both functions are lin-

ear [Figs. 3(a) and 3(b)]. The nonzero wavelength and
velocity at zero excess pressure reflect a residual flow due
to gravity filtration.

A peculiarity of the BZ system is the evolution of gas.
This evolution led to a slow buildup of internal pressure,
normally small in comparison with the external pres-
sure. However, it produced an interesting effect when
the downstream stopcock was closed and the external
pressure was released. In this case the internal pressure
started to push the solution in the upper part of the tube
upwards. Therefore one could see an initial fading of the
waves, followed by the reappearance of waves that slowly
moved upwards. By applying a small external pressure
we could balance this effect and make the waves disap-
pear again. Because of the dead volume between the
filter plug and the stopcock, a small flow persisted even
with the stopcock shut, when more pressure was applied.
This additional pressure caused the waves to reappear
and propagate downwards. When such a balance was
achieved we could create and extinguish the waves and
reverse their direction many times. The characteristic
length of these slow waves was about 1 mm and they ap-
peared and disappeared almost synchronously on a time
scale of ca. 0.5 min on a 10 cm segment.

The phenomenon is described [5] by the reaction-flow-
diffusion equations
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FIG. 2. The composition of the images of a part of the
vertical tubular reactor showing propagation of the waves gen-
erated by the difFerentia1. flow. Ferroin is immobilized on the
ion-exchange resin that is packed in the tube. The flow of
the other reactants is downwards. The light grey bands cor-
respond to the areas where the ferroin is in its oxidized form
(ferriin). The dark portions correspond to the reduced state
The horizontal black-and-white lines at the top and bottom
are distance markers spaced 5 cm apart. The figures show
the relative time in seconds for the succesive frames. The
concentration set is (a) (see text).
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FIG. 3. (a) The velocity and (b) the length of the waves
generated by DIFICI in the experiment; the concentrations
are as in Fig. 2. Pressure of 1 atm corresponds approximately
to 0.25 cm/sec of the flow velocity. (c) The velocity and (d)
the length of the waves simulated by the numerical integration
of the Puschinator model. The parameters are as in Fig. 2

except for [Fe(phen)s] = 3 x 10 M (to account for packing
density).
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BX 0~XX= f(X, Y)+v +D
0? BT

Y = g(X, Y),
where the spatial coordinate axis lies in the direction of
the flow. We assume that the chemical system has a sta-
ble steady state Xp, Yp [i.e. , f(Xp, Y'p) = g(Xp, Yp) = 0]
when perfectly stirred. Consider further the Puschinator
model of the ferroin catalyzed BZ reaction [8]

X(l —X) —(qqa + tq)

dY Y
d7. 1 —Y '

(2)

where [Fe(phen)s+] = CY, [HBr02] = (kiA/2k4)X, s
kiA/k4C, a = k4KsB/(kiAhp), p, = 2k4k7/kik5, t
[k4C/(kiA) hp)r, P = 2k4kisB/(kiA) hp, C =[Fe-

(phen) s++ [Fe(phen) s+], A =[NaBrOs], B = [CHBr-
(COOH)g], hp is the acidity function, q is the stoichio-
metric factor, and k, are the rate constants [8]. (Here
we use Y for [Fe(phen)s+] instead of the traditional no-
tation Z). Linear stability analysis [5] of Eq. (1) for the
Puschinator model predicts dispersion relations shown
in Fig. 4 for the eigenvalues of the homogeneous steady
state (SS). The SS becomes unstable at flow rates ex-
ceeding a critical value. The resulting pattern was stud-
ied by numerical integration of the reaction-flow-diffusion
equation (1) for model (2) in a circular reactor (periodic
boundary conditions). The initial perturbation of the
SS (a sum of all possible cosine harmonics with equal
amplitude, 2.5 x 10 of the SS value) developed into
wave trains traveling with the flow. The calculated ve-
locity and wavelength are plotted in Figs. 3(c) and 3(d).
Since we modeled a circular reactor, the wavelength could
only change by a finite value in response to a parameter

1: v = O.OOOS7cm/sec
2: v = 0.0097
3:v =0.09
4:v =0.97

— 5: v = 9.7
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FIG. 4. The real part of the eigenvalue as a function of
wave number for the DIFICI in the Puschinator model. The
parameters are as in Figs. 3(c) and 3(d).

change. Obviously this is the reason for the deviation of
the calculated values from a smooth line.

Experimentally, the velocity of the flow through the
packed tube could not be measured precisely, since the
packing density was unknown; therefore, the experimen-
tal [Figs. 3(a) and 3(b)] and calculated [Figs. 3(c) and
3(d)] graphs cannot be superimposed directly. We made
a rough evaluation of the flow velocity by measuring the
volumetric flow rate through the tube and assuming that
the spherical beads are closely packed. The resulting up-
per limit estimate of the flow velocity is 0.25 cm/sec at 1
atm of excess pressure. This means that the semiquanti-
tative agreement between the experimental and calcu-
lated plots is already good and that the quantitative
agreement could be expected to be even better if the
actual flow velocity could be measured.

As in Turing structures, the wavelength is an intrinsic
property of the system and is not determined by an ex-
ternal pacemaker as in trigger waves. Another difFerence
is that the waves induced by DIFICI develop simultane-
ously over the entire reactor and they are asymmetric,
propagating only in the direction of the flow. Trigger
waves, on the other hand, are excited locally and emitted
with radial symmetry [9]. This difference is illustrated
by comparison with a previous experiment [10] where a
similar setup was used to study the effect of a differen-
tial flow on externally initiated trigger waves. The latter
propagated in both directions from the pacemaker, they
persisted at zero flow, and they disappeared above a crit-
ical flow rate. For the DIFICI, on the other hand, theory
predicts [5] a lower limit of the flow rate but no upper
limit. Although we could not measure this lower limit
(because the mentioned gravity filtration and gas evolu-
tion made the small velocities hard to control), the above
observations are clear evidence for its existence. There
was no evidence for the existence of an upper limit.

While the occurrence of the Turing instability de-
pends crucially on the ratio of diffusion coefficients b =
D;„h/D, t, the flow-induced instability is determined

merely by the magnitude ~v~ of the easily controllable rel-
ative flow velocity (or rather by the ratio ]v~/~D when
difFusion is included). Thus it is immaterial which of the
two control species is immobilized: As the previous anal-
ysis [5] and present experiment show, fixing the inhibitor
promotes the DIFICI, while this would prevent the Tur-
ing instability from occurring.

This paper presents the first experimental verification
(using a chemical example, by convention and conve-
nience) of a rather general principle (referred to as DI-
FICI) by which a dynamical system characterized by
activation-inhibition kinetics is caused to self-organize in
response to a differential bulk flow of the key species.
The class of systems fulfilling the first, kinetic, require-
ment (i.e. , including the activator and inhibitor subsys-
tems) is very broad. Examples can be found in chemistry,
plasmas, semiconductors, lasers, heterogeneous catalysis,
biological development, physiology, and population dy-
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namics. The second, or differential transport, condition
restricts the pattern formation to a smaller subclass. The
differential bulk flow condition for the DIFICI is less re-

strictive, and hence covers a larger subclass than does
Turing's condition of differential diffusivity. Diffusivity
is a molecular property and therefore is not easily con-
trollable. There are many ways, however, by which dif-

ferential bulk flows can be realized and controlled: In
our paper we present one example, and electrolytes, plas-
mas, and semiconductors in external fields form another
class, while biological cells and organs that are bathed
in streams of fluids form a third class. Turing patterns
are widely recognized as important vehicles for biologi-
cal and physical self-organization. Our emphasis on the
more general notion of differential bulk flow expands the
conceptual basis of Turing's original idea, and, thus, also
expands its field of applicability.
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