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We consider a model of strongly correlated electrons that exhibits superconductivity. It diAers from
the Hubbard model by nearest-neighbor interactions. We find the ground-state wave function (in one,
two, or three dimensions) and show it to be superconducting for attractive and moderately repulsive on-
site interaction.
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The phenomenon of high-T, superconductivity has led
to an increased interest in theoretical models for super-
conductivity other than the BCS theory. In [1], Ander-
son, Zhang, and Rice proposed that superconductivity
can occur in models based on purely electronic interac-
tions. In this Letter we discuss the electronic model that
we introduced in [2] and show that it is superconducting.
We determine the ground-state structure at zero temper-
ature and investigate under what conditions it exhibits su-
perconductivity. We will prove that for negative U (at-
tractive case) the model has a unique ground state which
has off'-diagonal long-range order and is thus supercon-
ducting. This result holds for lattices of arbitrary dimen-
sion. We will also discuss the phase diagram for positive
U, where we will find that superconductivity persists if
the repulsion U is smaller than a certain critical value U, .

The neighboring phases are a phase of the supersym-
metric t-J model and an insulator phase.

Electrons on a lattice are described by operators cj
j=1, . . . , L, cr = t, f, where L is the total number of lat-
tice sites. These are canonical Fermi operators satisfying
[c;,cj,] =6; tB,. The state ~0) (the Fock vacuum)
satisfies c; ~0) =0. By n; =c;t~; we denote the num-
ber operator for electrons with spin o. on site i and we
write n; =n; t+n; ~.

The Hamiltonian of the new model on a general d-
dimensional lattice can be written as
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This Hamiltonian contains kinetic terms and interaction
terms that combine those of the Hubbard model and of
the t-J model. It also contains a hopping term for local
electron pairs (spin-down and spin-up electrons occupying
the same site). The interaction terms are very similar to
the ones proposed by Hirsch in his model of superconduc-
tivity, which was derived by a tight-binding analysis [3].
The second term in (I) is the on-site Hubbard interaction
term and p is the chemical potential. The Hubbard cou-
pling U will determine the ratio of local electron pairs to
single (unpaired) electrons in the ground state.

The state g, exp(ik x)cst text 1 ~0) (where x runs over
all sites of a d-dimensional lattice) is an eigenstate of the
Hamiltonian (1). We call this state a localon state of
momentum k.

The Hamiltonian H has a rich symmetry structure. It
is invariant under two independent SU(2) symmetries
and under eight supersymmetries. Together with the
number operator for local electron pairs and with the
identity operator these symmetries generate the super-
algebra U(2~2) (see [2] for more details). The first of the
two SU(2) algebras corresponds to ordinary spin; the

generators of the second SU(2) algebra are

ti= g c, fc, l, ri'= g c&'fc,'f, ti'= g —(1 nj) . —

(3)
It can be seen that the operator gt creates a localon of
momentum zero. The fact that it commutes with the
Hamiltonian H and with the U term in (I) makes it pos-
sible to construct eigenstates of the full Hamiltonian H
that contain a large number of zero-momentum local
electron pairs. Such states will play a crucial role in our
discussion below.

The Hamiltonian density Hj k acts as a graded permu-
tation H& k of the electronic states at sites j and k. By
"graded" we mean that there is an extra minus sign if the
two states that are permuted are both single-electron
states. For example,

Hj kcj f fo& =Ck, f 10& ~

Ht kc~ fck, l )0& = —cgfck f /.0&, etc.
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This property implies that the number operators Nt, N~
(the number operators of single electrons with given
spin), and N( (the number operator of local electron
pairs), defined by

L L

Nl+N(= g n, (, N~+N(= Z nj, lj=l j=1

L

N(= g nj (n~ (,j 1

~I((&=o, n'lv&= l (L —N. )lv&, (6)

where N, =N t +N
~
+2NI is the number of electrons in

l(((). We can then construct additional eigenstates of the
form

1((.) =(n')"li(), n =0, 1,2, . . . , I, —N, .

Following [6] we consider the following off-diagonal ma-
trix element (kAl) of the reduced density matrix p2 for
the state ly„):
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We consider the thermodynamic limit L ~, N
n ~, where the ratios n/L (superconducting density)
and N, /L (normal-state density) are kept fixed. If the
matrix element (8) approaches a nonzero value A asymp-
totically at large distances (1« lk —ll «L), then the
state l(((„) exhibits ODLRO and is superconducting. The
value 4 can be found by averaging over k and I and then
using the SU(2) structure of the generators (3),

(8)
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all commute with H, so that H can be diagonalized
within a sector with given numbers Nt, N~, and NI. This
implies that our Hamiltonian does not allow for decay of
local electron pairs into two single electrons.

In the sectors without local electron pairs H reduces
to the Hamiltonian of the supersymmetric t-I model with
t =1, 1=2 (in our discussion below we always consider
this special case), and the model is isomorphic to the
spin- 2 X%A model in the sector with only vacancies and
local electron pairs.

Abstract graded permutations of two species of bosons
and two species of fermions were first considered as a
dynamical Hamiltonian by Sutherland in [4], where the
ground-state energy for the one-dimensional model was
computed.

Let us now discuss physical aspects of the new model,
which hold in arbitrary dimensions. We will first estab-
lish that certain eigenstates of H have the property
of off-diagonal long-range order (ODLRO), which is
characteristic of superconductivity [5]. Let us consider
an eigenstate l((() of H which is a highest-weight state of
the q-pairing SU(2) algebra (3). It has the properties

H((v) =H +U g (nj lnj 1)+ ———U.L N
j~]

(10)

We first consider the term H . The fact that H is equal
to minus the sum of graded permutations shows that the
energy E is bounded from below by —M. One state
which saturates this value is the empty state l0). Using
the U(2l2) symmetry of H we can construct the N
particle state l+(vt2) =(r(t) t l0), which by construction
has the same energy E . If we now take into account the
remaining terms in H~&~, we find that they are bounded
from below by the value UL/4 (U & 0), where the
minimum is reached for states that have N/2 local elec-
tron pairs. This is precisely the case for the state l%'(v(2).
This shows that l+(v(q) is a ground state of H. To show
that it is the unique ground state, we should check that
there are no other states with N/2 local electron pairs

(~')"'Io&I

0 2
D

FIG. 1. Ground states in the canonical ensemble.

The result establishes the property of ODLRO for the
states l y„).

We now consider the phase diagram of the Hamiltoni-
an H at zero temperature. Equation (1) defines the mod-
el in the framework of the grand canonical ensemble. We
now change our point of view to the canonical ensemble,
dropping the chemical potential ((( from (1), fixing the
magnetization to zero, and the density D =N/I (N =N,
+2n is the complete number of electrons) to a value in

the interval 0~a ~ 2. On the basis of the analysis
below, we propose the phase diagram shown in Fig. l.

We claim that the ground state in the areas I and II is
of the form li((„) as in (7), implying that in these regions
the model is superconducting. For region I, correspond-
ing to negative U, this is rigorously established by the fol-
lowing theorem.

Theorem. —The ground state of the Hamiltonian (1),
with p =0 and with U &0, in the sector with an even
number N of electrons and zero magnetization is unique
and is given by l+(v(2) =(rt ) l0). The ground-state
energy is Eg =UL/4 —M, where M is the number of
nearest-neighbor links on the lattice.

Proof. —In the sector with N electrons the Hamiltoni-
an reads
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(and no single electrons) that saturate the lower bound
—M of H . This can be proved by an elementary appli-
cation of the Perron-Frobenius theorem as follows. We
consider the action of 1

—H = I+g&~i, &II)I„on the
space of all states with N/2 local pairs and no single elec-
trons, which can be represented as a square matrix of
size (Iv~2). It is clear that this matrix is symmetric, that
its entries are non-negative, and that there exists a posi-
tive power of the matrix which is such that all entries are
positive. For this situation the Perron-Frobenius theorem
guarantees that there is a unique state with a maximal ei-
genvalue for 1

—H . This state, which we already
identified as ~+Jvy2), is the unique ground state of H in

the sector with N/2 local pairs and thus the unique
ground state of H in the sector with a total number of N
electrons.

To establish the phase diagram in Fig. 1 for positive
coupling U it is more convenient to work in the grand
canonical ensemble first, and then translate the results to
the D-U plane in the canonical ensemble. The phase dia-
gram at zero temperature in the grand canonical ensem-
ble is given in Fig. 2. In order to derive this diagram we
rewrite the Hamiltonian (I) as a function of p and U as

H(P, U) =H —(P+ —,
'

U)(Nl+Nl ) —2PN(+UL/4.

We first note that (up to a constant) under the particle-
hole transformation c~~ cj. the Hamiltonian trans-
forms according to H(p, U) H( —p, U) —2pL. There-
fore it is sufhcient to determine the ground states for

p ~ 0; the ones for p & 0 can then be obtained by a
particle-hole transformation. We also note that all eigen-
states of the (supersymmetric) t Jmodel are eige-nstates
of the Hamiltonian (1) as well. Using this fact we will be
able to express the ground-state wave function ~%'g) of the
Hamiltonian (11) in terms of the ground-state wave func-
tion ~t

—J) of the t-J submodel (in the grand canonical
ensemble) and the U(2I2) generators. In one dimension
the t Jground-state -wave function is known exactly [7]
and our results become explicit.

I

t-J half filled band (insulator)

0

FIG. 2. Ground states in the grand canonical ensemble.

It was proved by Sutherland in [4] that the ground-
state energy of H, which is minus the sum over graded
permutations on four states (two bosons and two fer-
mions), will be equal to that of the r-J submodel, which
is minus the sum over graded permutations on three
states. Here the numbers of the two species of fermions
and the total number of bosons is fixed but arbitrary.
This theorem can be used as follows: If no local electron
pairs are present in the ground states, the Hamiltonian
reduces to the t-J Hamiltonian with eA'ective chemical
potential p&J =p+ 2 U. Whether it is energetically favor-
able to have local electron pairs in the ground state is
then determined exclusively by the term —2pNI in the
H amilton ian.

We recall the following results for the ground state of
the t-J model at zero temperature as a function of p&J

(see, for example, [7]). For p,J (0 the ground state is
the empty state. Once p&J becomes positive the ground
state starts filling up, with the density monotonically in-

creasing as a function of p,J until it reaches half filling
for a finite value p&J=p, . In one dimension the Bethe
ansatz solution gives p, =2 ln2. The equations
p+ 2 U=0 and p+ 2 U =p, define two critical lines in

the p-U plane for our model (see Fig. 2).
Let us now consider the regions II, III, IV, and V in

Fig. 2. The ground states in the regions III' and V' will

follow from the ones in III and V by particle-hole
correspondence. Note that below we use the term "t-J
submodel" in the context of the grand canonical ensemble
[i.e., including the p,J(N1+Nl ) term].

In region V the ground state of the t-J submodel is

empty. Furthermore, since p & 0 Sutherland's result tells
us that it is not favorable for local electron pairs to enter
the ground state. We conclude that the ground state in

region V is the empty state, i.e., I +g) = IO).
If we now cross the line p+ 2 U =0 to enter region III

[ —2p ~ U ~ 2(p, —p), p (0], there are single electrons
present in the ground state of the t-J model. Since p is
still negative, it is not energetically favorable to have lo-
cal electron pairs in the ground state. We conclude that
in region III the ground state is that of the t-J model
(which is presumably metallic) without any local electron
pairs, i.e., ~+g) =~t —J).

At the line p+ 2 U =
2 U, the t-J ground state reaches

half filling and in the entire region IV the t-J half-filled
ground state is the ground state of our model.

Let us finally look at region II, where 0~ U~ U,
=2p, and p=0 (U, =41n2 in one dimension). Let us
first consider the ground state

~
t —J) of the r -J submo-

del, which is also an eigenstate of the Hamiltonian (1) of
energy F. It has a certain filling, which varies from zero
for U=O to one for U=U, . As p =0 it follows from
Sutherland's theorem that the ground-state energy of the
Hamiltonian (11) is equal to E, and thus that It —J) is a
state of lowest energy of H(0, U).

Using the fact that [rlt, Hp] =0, we can construct addi-
tional states with energy E of the form (rlt) "It —J). In
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Fig. 2 the segment under consideration is thus singular,
representing a large number of possible ground states.
However, if we pass to the D-U plane in Fig. 1 this singu-
larity is resolved because the number n of local electron
pairs adjusts itself to the density that is imposed. Thus a
nonzero number of local electron pairs will enter the
ground state in region II in Fig. 1. The resulting
ground-state wave function is of the form ~+s)
= (rit) "~ t —1) and we already showed that it is supercon-
ducting (note that rl~t —J) =0). The ground state con-
sists of a condensate of zero-momentum local pairs, and
single nonpaired electrons in a Fermi sphere. As a result
of the (superconducting) condensation, the volume of the
Fermi sphere of the unpaired electrons is smaller than the
volume of the Fermi sphere for a free electron gas
(Luttinger's theorem is not applicable [8]).

In sector III in Fig. 1 the ground state is that of the t -J
submodel (no local electron pairs). In sector III' the
ground state is that of the particle-hole transformed t-J
model. It can be shown to be of the form (rit) ~t

—1),
where ~t

—I) is the ground state of the t-I submodel for
the opposite value p (in sector III). Sectors III and III'
are separated by an energy gap of H that exists at half
filling, D =1, for U & U, . This situation is similar to the
one in the repulsive 1D Hubbard model, where a gap
arises at half filling [9]. In regions I and II (dotted line
in Fig. 2) the compressibility is infinite, which is inti-
mately connected to the presence of the superconducting
condensate. The situation is quite similar to Bose con-
densation in a free Bose gas, and can be "regularized" by
a perturbation of the Hamiltonian.

For the attractive case we also determined the wave
function of the supercurrent in a circular wire, threaded
by a magnetic field [10] (see also [11]). We found it to
be a bound state of all local electron pairs. Its wave func-
tion is equal to the one of a string solution in the one-
dimensional spin- 2 Heisenberg XXX ferromagnet.

In conclusion, we have shown that the model that we
introduced in [2] provides a particularly simple example
of a superconducting system. The mechanism of super-
conductivity is similar to the one of the strongly attractive
Hubbard model. At zero temperature, the superconduc-
tivity already exists in one dimension and we have seen
that it persists if the on-site interaction becomes weakly
repulsive. We expect that in three dimensions the super-
conductivity will persist at finite temperature. In a future
publication we will further clarify the physics of the mod-

el in one dimension by using the Bethe ansatz solution
[10].

Because of the experimentally established fact that
Cooper pairs in high-T, superconductors are rather small,
our model (with "zero-size" pairs) might have applica-
tions in this field. In order to make contact with experi-
ment is is necessary to perturb the model (change the
coeScients of the various interactions in our Hamiltoni-
an). If this is done the most important newly occurring
phenomenon is the decay of local electron pairs into two
single electrons. The physics of this process has been
studied by Lee and Friedberg in their field theoretical
model of superconductivity [12]. In their model electron
pairs are described by a scalar Bose field interacting with
fermionic fields (representing the single electrons) via the
above-mentioned decay process. Their results (obtained
in perturbation theory) show the existence of supercon-
ductivity and thus indicate that the decay of local elec-
tron pairs would not destroy the superconducting proper-
ties of our model.
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