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Energy-Crossing Number Relations for Braided Magnetic Fields
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This Letter derives lower bounds on the energy of braided magnetic fields, based on crossing
number techniques pioneered by Freedman and He. Mean crossing numbers are defined for magnetic
fields inside a cylinder; for configurations with a uniform axial component the square of the crossing
number provides a lower bound for the free magnetic energy. An energy-crossing number relation is
also derived for a random field with Gaussian amplitude distribution, in the limit of small correlation
lengths. These results provide information on the structure of solar coronal loops and on the problem
of coronal heating.

PACS numbers: 96.60.Hv, 02.40,—k, 47,65.+a, 52.30.Bt

The lines of force within a magnetic field can be
twisted, knotted, or entangled. Recently, Freedman and
He [1] employed knot theory techniques to find lower
bounds on the energy of topologically complex magnetic
fields. These lower bounds can be used to constrain the
equilibrium states accessible to a magnetized fIuid with
a given field topology.

Magnetic helicity conservation has often been invoked
as a constraint on the final state of a resistive plasma un-
dergoing relaxation [2]. The helicity integral [3, 4] mea-
sures the total pairwise linking of all the field lines in the
volume of integration, but does not take into account
the structure of individual lines. Under a wide vari-
ety of boundary conditions the minimum energy states
for a given helicity are linear ('V x B = AB, with A

constant) [5—7].
Suppose we wish to include more or diferent informa-

tion on the topology of the field than total magnetic he-
licity. If we take into account the topology of individual
field lines, then the magnetohydrodynamics equilibrium
equations become nonlinear and often extremely difIicult
to solve [2, 8]. To make matters worse, for many topolo-
gies solutions must necessarily contain singular sheets
where the electric current density is divergent [9—11]. Nu-
merical modeling of braided magnetic fields extending
between two parallel plates shows current densities in-
creasing exponentially with topological complexity [12].
Here the Freedman and He techniques become important,
as these do not involve solving nonlinear partial differen-
tial equations. Instead, they define a quantity called the
"asymptotic crossing number" which provides a precise
measure of field-line entanglement. This quantity is not
a topological invariant, but like the magnetic energy it
has a positive minimum value for a given magnetic topol-
ogy. The minimum asymptotic crossing number, times a
constant coefficient, provides a lower bound for the equi-
librium energy.

This Letter presents crossing number-energy relations
for braided magnetic fields. Such fields are strongly
aligned in one direction but possess significant transverse
structure. The derivation for braided fields is simpler

1
C =—

'Tt
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is independent of viewing angle.
The crossing number can be computed directly from

the form of the curves. Let the two field lines follow
the curves xt(z) and x2(z), where xt(z) = (xq, yq). The
displacement vector rq2(z) = x2(z) —xq(z) makes an
angle 8t2(z) with respect to the z axis. Now, an observer
viewing the curves from the angle P will see crossovers
wherever 8q2(z) = P or P+ 7r. If rq2(z) sweeps out a net
angle 68q2 = I]d8qq/dz]dz, then a proportion A8t2/vr
of observers will see a crossover. Thus

than for knotted fields, and minimum crossing numbers
are easier to calculate [13, 14].

Fluid dynamical techniques can assist in the study of
knots and links: For example, the minimum energy of a
knotted magnetic fIux tube provides a potentially pow-
erful knot invariant [15]. Conversely, topological tech-
niques have led to new and interesting questions about
the behavior of fluids [16]. The criticism is sometimes
raised, however, that traditional fluid problems do not
depend on topological insight for their solution. One tra-
ditional problem in astrophysical Quid dynamics concerns
the source of heat for solar and stellar coronas. Parker
[17, 18] has suggested that numerous small flaring events
convert magnetic energy into heat. The "microflares"
are triggered when randomly generated magnetic fields
in a corona become unstable to reconnection. For this
problem we need to understand the structure, or at least
the energy content, of highly tangled magnetic fields. As
discussed at the end of this Letter, energy-crossing num-
ber relations can make an essential contribution to this
understanding.

First consider two field lines stretching between paral-
lel plates at z = 0 and z = I. Let P be the polar angle
in the x-y plane. Now observe the curves from the view-
ing angle P = a/2 (equivalently, project them onto the
x-z plane). The two curves will exhibit a certain number
of crossovers, c(n/2). Different viewing angles P yield
difFerent crossing numbers c(P) (see Fig. 1). However,
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Apply the triangle inequality to the integrand in Eq.
(6):

dC B( Z

dz 27t
ri2'(lbi ~»l+ lb2 ~»l)d'xi d'x2

(9)

After relabeling the second term, and writing bi ——bib',
the inequality becomes

dC B( Z

dz 7t
X2 X] ~

r12
(10)

FIG. 1. From the viewing (projection) angle P, two
curves will be seen to cross wherever the displacement vec-
tor ri2(z) = P or P+ 7r.

1 d0i2
C =— dz.

Now estimate the x2 integral: First find the vector field

n(xi) which maximizes I(xi) = J(ln ei2[/ri2)d x2.
This turns out to be 6. = z x xq. The maximum is
I (xi) = Rf(a), where a = lxil/R and

1 —0
f(a) = 2(1+1n(1+a )+ tan

2G 1 —a

Consider a magnetic field con6ned inside the cylinder
x + y & R . We sum c over all pairs of lines (count-
ing each pair once and weighting by flux) to obtain the
crossing number for the magnetic field:

Thus

RB2dC
dZ 7t

bif d xi. (12)

C= 1

27T
Bzi BZ2 d Xy d X2 dZ.

dt9g2

dz

Define

f'—:(7rR') ' f d xi --13.6.

bi = dxi(z)/dz = B~( xi) /B, (x )i.

Then

d0)2 1
, (b2 —bi)

dz Tg2

Then by the Schwarz inequality

dCI' RBf bdxZ j.

Noting that

(14)

where Oi2 = z x ri2. Equation (3) for C can be written
as the integral of dC/dz, with C & L (dC/dz) dz,

d|
dz

B,gB,2
l(bz —bi)

2' r12

one finds

B = B,(b, b„, 1) = B,(b+ z).

We wish to look for lower bounds on the free energy

B2
Z

87t.
bdr.

Without the absolute value signs, Eq. (6) would give the
z derivative of open (relative) helicity [19]. Freedman
and He [1] obtained analogous expressions for crossing
numbers averaged over all possible projection angles in
three dimensions (i.e. , averaged over S2 rather than Si).

This Letter concerns fields with a strong axial compo-
nent B,. For such fields the topology manifests itself in
the structure of the transverse field rather than in the rel-
atively small variations in B, [20]. We will let B, = const
so that

C &vr 'LR B,f2 b d x. (16)

Turn this around to obtain a lower bound for the free
energy [Eq. (8)]:

E & 8 2LBB C

=9.18x10 (LR B ) C

How far off is the lower bound in Eq. (17)? We can test
this for a particular configuration: Assume that b(x, z)
is a random vector field with correlation length much
smaller than R. Also assume that the distribution of field
strengths is Gaussian. Consider the average of dC/dz
[Eq. (6)] over many realizations. First, (l(b2 —bi) Hi2l)
should only depend on the separation r~2. In the limit of
zero correlation length this quantity will be a constant.
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Thus

B2
(dC/dz) = '(l(b2 —bi) ~»l)

1 2 2d Xid X2.
T12

For a Gaussian distribution the bracketed term equals
/2/7rb, , where 62, = (6 )i~ . Second, the double in-

tegral of rr2 yields 16irRs/3. Thus

(dC/dz) = (8/3)+2/rrB, R b, „ (20)

which leads to

g~2
—io (C)2B—2L —i R—4

=2.76x10 (C) B L R
(21)
(22)

Ey & (7r /8 f2)C . C' /N L

= 9.06 x 10 C,„C /N L.

(23)

(24)

The quadratic dependence on C;„deserves a remark.
The braided fields with constant B, treated here are sim-

ilar to a system with two spatial dimensions plus time
(let z + t). In contrast, Freedman and He [1] considered
fully three-dimensional fields; they found the minimum

energy growing linearly with crossing number.
In the remainder of this Letter we consider magnetic

fields (or braids) generated by random motions. When
investigating how photospheric motions induce structure
in the coronal field, it is natural to employ a model with
discrete filaments: Magnetic flux is highly localized at
the photosphere. The Hux from one photospheric flux el-

ement may bifurcate and connect to several photospheric
elements of the opposite polarity. This possibility may be
accommodated by increasing N and allowing for variable
flux.

The procedure involves letting N points in a plane cor-
respond to the N foot points of the filaments inside a
coronal loop. These N points move about each other

randomly according to some law (e.g. , random walk, dif-

fusion, motion in a stochastic velocity field). The fila-

ments above become braided as a result. One must then

This is 3.01 times the lower limit.
Energy-crossing number relations can only be useful if

there is a method for calculating C. Suppose the field
can be divided into N mutually entangled flux tubes.
Then we can approximate C by counting the crossovers
of the N axis curves of the flux tubes. These N curves
form a braid between the planes z = 0 and z = L. Let
the dimensionless crossing number for the N axis curves
be C~ with minimum C;„, and assume for simplicity
that all N tubes have equal flux C = 7rR2B, /N Note.
that C counts more crossings than C~, in particular, C
counts crossings between two field lines within the same
tube whereas C~ only counts crossings between diferent
tubes. Thus C & C C~ & 4 Cmj„so the lower bound
[Eq. (17)] becomes

find the minimum value Cm, „ for the braid structure at
time t This gives C;„(t);the relations between C;„and
the magnetic energy given above yield Ey(t) and can be
used in a coronal heating calculation.

In a recent simulation [21] three photospheric flux el-

ements were allowed to random walk about each other.
They were confined to a disk of radius 1000 km; when

they reached the edge of the disk they bounced back in-

side. They moved with an average velocity of V = 1

km/s. For step sizes of A = 1000 km it was found that
C(t) = 4Vt/A, i.e. , C increased by about one unit each
hour.

How does crossing number C;„vary with N when
the braid is generated by random motions? Fix the
flux C and the typical diameter D of a Hux tube, i.e. ,

C = 7rD2B, /4. Then R = Ni~2D/2. The rms field

strength b, , is an intensive quantity: it should depend
on the "amount of tangling per unit area" but not on N.
From Eq. (22)

~rms + 0 27CminDL' (25)

Thus C;„ increases as N j . Intuitively, think of the N
foot points in a square array, with N j points in each
row, and a distance D between points. If one point moves

by D or so, then in projection up to N j additional
crossings will be made. The N j dependence remains
after averaging over projection angle; it also remains if
we drop the assumption of a square array. Thus if all N
points move the increase in C;„should go as N j

Coronal heating by random boundary motions has
been suggested by Sturrock and Uchida [22], Parker [17],
van Ballegooijen [23], and Berger [24]. For a coronal ac-
tive region the power requirement is approximately 10
ergscm2s [25]. Again consider N foot points in ran-
dom motion about each other. If the typical photospheric
distance between foot points is d, then we can write

C;„(t) = P N'~2 (26)

= (7r /16 f2) pC;„N ~ (B,D V/Ld) (28)

We now suppose that the energy input saturates when
the mean value of 6 reaches some critical value p. This
happens when reconnection liberates energy at the same
rate as energy is pumped in at the photosphere. In this
case, Ey = LN7r(D2/4)B, y, From Eq. (24) (aga. in for
the lower bound)

Here P is a dimensionless efficienc parameter. The pho-
tospheric distance d may be less than the diameter of
coronal tubes D because of the clumping of Hux at su-
pergranule boundaries.

We wish to calculate the power per unit area going into
a loop consisting of N Hux tubes. The power input per
unit area [using the lower bound of Eq. (24)] is then

P = (NirD /4) dEy/dt
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C;„=(2f2 N I Lp/~D).

The power at saturation is then
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Here 7r2/8f2 = 0.334. Let B, = 100 G, P = 0.06
(as suggested by the random walk simulation [18]),
V = 1 km/s, and p, = 0.25. Then P = 5 x 10sD/d
ergs cm s . This gives sufhcient power for an active
region, provided D/d ) 2 (as d measures typical dis-
tances between foot points at the photosphere, clumping
of foot points at the boundaries of supergranules should
reduce d relative to the coronal flux tube diameter D).
Using the zero-correlation estimate increases the heating
rate by a factor of 1.7.
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