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Elastic String in a Random Potential
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We have studied numerically the dynamics of a directed elastic string in a two-dimensional array
of quenched random impurities. The string is driven by a constant transverse force and thermal
fluctuations are neglected. There is a transition from pinned to unpinned behavior at a critical
value Fr of the driving force. At the transition the average string velocity scales with the driving
force. The scaling is equally well described by a power law vg ~ (F — Fr)S, with ¢ = 0.24 £ 0.1,
or by a logarithm, vq ~ 1/In(F — Fr). The divergence of the velocity-velocity correlation length at
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threshold is characterized by an exponent v = 1.05 £+ 0.1.

PACS numbers: 74.60.Ge, 05.60.+w, 68.10.-m

The effect of disorder on the dynamical properties of a
driven elastic medium is of interest for a number of phys-
ical situations. These include one-dimensional models of
charge density waves (CDW’s) (1, 2], flux flow in type-II
superconductors [3], and the motion or growth of various
linear boundaries between two systems or two phases of
the same system, such as the interface of a fluid displac-
ing a second fluid in a porous medium [4]. This model
is also closely related to models of friction, earthquakes,
and sandpiles [5].

The specific problem considered here is the motion of
an elastic string driven by a transverse constant force
through a two-dimensional array of randomly distributed
pinning centers. The impurities are fixed in time and
they provide a type of quenched disorder qualitatively
different from the noise in the well-known Kardar-Parisi-
Zhang (KPZ) model of interface dynamics, where dis-
order is uncorrelated in time [6]. Analytical work on
the dynamics of the string with quenched disorder has
been limited to mean field theory (7, 8] and to perturba-
tion theory in the disorder [7, 9] to analyze the motion
at large driving forces. Ioffe and Vinokur discussed the
string dynamics for small driving forces and finite tem-
perature [10]. While these asymptotic regimes are rather
well understood, the dynamics in the nonperturbative re-
gion near threshold needs further investigation.

In this paper we present the results of a numerical
study of the motion of the string in the absence of thermal
fluctuations. We have found that, as in the CDW model,
there is a threshold value of the driving force below which
the string is stuck in a pinned configuration and above
which the string moves on the average in the direction of
the driving force. As discussed below, there are, however,
qualitative and quantitative differences between CDW
models and the model we study here. We are mainly in-
terested in the behavior just above this depinning transi-
tion, where transport is collective and perturbative meth-
ods cannot be used. The behavior near threshold is that
of a dynamic critical phenomenon and it can be described

by scaling laws and critical exponents [8]. We find that
the average velocity scales with the reduced driving force
f = (F—Fr)/Fr. The data are equally well described by
a logarithm, vy ~ 1/In(f), or by a power law, vy ~ f¢,
with a small exponent ¢ = 0.2440.1. To gain insight into
the behavior near threshold, we have also studied equal-
time velocity and position correlation functions. The
spatial range of the velocity correlations is determined
by a correlation length £ that diverges near threshold as
& ~ f7¥, with v = 1.05 £ 0.1. We find that the tem-
poral fluctuations around the mean velocity also diverge
as threshold is approached, with an exponent consistent
with that found from the scaling of the velocity correla-
tions and arguments due to Fisher [8].

The main difference between CDW simulations in one
dimension and the model considered here is in the pin-
ning potential. In CDW’s the pinning potential is un-
correlated along the length of the string, but is periodic
in the direction transverse to the string. Here the pin-
ning potential has short-range correlations both along the
string direction and transverse to the string. Because the
disorder is uncorrelated, any finite string will eventually
encounter a region of exceptionally strong pinning that
will stop its motion. However, the expected time to en-
counter such a region increases exponentially with system
size.

The present model is relevant for the motion of mag-
netic flux lines in the mixed phase of type-II superconduc-
tors at moderate fields, as long as intervortex interactions
can be neglected [11]. In real systems fluctuations in the
direction transverse to the average motion are, however,
possible and may play a significant role in the region
near threshold. The present study should therefore be
considered mainly as the first step towards the study of
the dynamics of real interacting flux-line arrays in three
dimensions. In addition, the model is relevant for the dy-
namics of the immiscible-fluid interface in porous media.
Some of our results compare favorably with experiments
in such systems.
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The specific model we have studied is an elastic string
embedded in two dimensions and on the average aligned
with the z direction (in the superconductor this is the
direction of the applied magnetic field). The position of
a point on the string at height z and time t is denoted
by z(z,t). The Hamiltonian for the string is

H= /()Ldz{g(%%y +§Ui(r_Ri) ”‘-7:35(2)},
(1)

where L is the size of the system in the z direction. The
first term in Eq. (1) is the elastic energy of the string,
with K the string elastic constant. The second term
describes the interaction with N, impurities randomly
distributed throughout the plane at positions R;. Here
r = (z(z),2) denotes a point on the string. The inter-
action U; of the string with the ith pin is approximated
by a potential well centered at the pin location R; with
maximum depth U, (the depth is the same for all the
pins—it is not a random variable) and width R, in both
the z and z directions. The last term in Eq. (1) arises
from the constant driving force per unit length F applied
to the string in the z direction.

We consider the overdamped string dynamics. Neglect-
ing thermal fluctuations, the equation of motion for the
elastic string is
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where we have introduced dimensionless variables and
parameters. All lengths are measured in units of R, and
time is measured in units of ¢o = yR2/K, with v a friction
coefficient. Also F' = FR,/K is a dimensionless driving
force and F, = Uy/K a dimensionless pinning force.

The overall motion of the string can be described in
terms of a “center-of-mass” velocity, defined as

L
Vo (F 1) = % /0 dzv(z, 1), 3)

where v(z,t) = Oz /0t is the instantaneous velocity of a
point on the string. The center-of-mass velocity is a fluc-
tuating quantity since it depends on the random positions
of the pinning centers. The drift or average velocity of
the string is given by

Va(F) = (Vem.(F, 1)), 4)

where the angular brackets denote the average over time.
In the calculation we average over impurity realizations
by performing an average over time since as time evolves
the string samples different impurity configurations.

We integrated numerically the discretized version of
the equation of motion (2) for strings composed of dis-
crete elements, each of dimensionless size 1 (i.e., Rp) in
the z direction, that interact through nearest-neighbor
elastic forces. We imposed periodic boundary conditions

in the z direction. Each element is subject to an z- and z-
dependent pinning potential consisting of randomly dis-
tributed triangular wells of width 1. We have run sim-
ulations for two values of the well depth, Uy = 0.05
(Fp = 0.1) and Up = 0.5 (F, = 1); the density of pins
was chosen be p = n,R2 = 0.1, while the elastic con-
stant was unity. The first set of parameters (F, = 0.1)
lies at the crossover between weak and strong pinning
regimes according to a dimensional estimate of the con-
dition for weak pinning, p > Fj,. By examining string
configurations as a function of time it appears, however,
that this choice of parameters corresponds to weak pin-
ning. The second set of parameters (F), = 1) lies in the
strong pinning regime. As the pinning force is discontin-
uous, we used a simple Euler algorithm for the simulation
and chose a time step small enough (typically At = 0.1)
that the results were insensitive to doubling the time
step. For fields within 10% of threshold, the length of
the simulation usually exceeded 4 x 107 time steps, while
for fields further from threshold, shorter simulation times
gave very good averages. We investigated systems of sizes
from 256 to 16 384.

For F}, = 1 the transition from the pinned to the un-
pinned regime occurs at a critical value Fr = 0.3058 +
0.0002 of the driving force, as shown in Fig. 1. This
value is of the order given by a dimensional estimate,
Fr = pF,, which gives Fr = 0.1. For F, = 0.1 the de-
pinning transition takes place at Fr ~ 0.01505. This
value is consistent with the dimensional estimate of Frr
for both strong (Fr = pF,) and weak (Fr = p2/3F;,1/3)
pinning, since they both give Fpr = 0.01. For large driv-
ing forces, F' > Fr, the effects of pinning are negligible
and the string advances uniformly, with vq ~ F. The
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FIG. 1. The scaling of the drift velocity vg ~ 1/In(f) for

F, = 1 and various system sizes. Inset: vq vs F' to highlight
the depinning transition.
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deviations from this asymptotic form were studied by a
perturbation expansion in F/F, [2,9], with the result
vy/F =1— CF~3/2 in agreement with our simulations
[12]. As the driving force F' is lowered towards the thresh-
old value the motion of the string becomes more and more
jerky. Near threshold the perturbation theory breaks
down. The scaling of the average velocity with reduced
driving force is well described by vg ~ 1/In(f) or by a
power law, vg ~ f¢, with a small exponent (¢ = 0.24+0.1
for F, =1 and ¢ = 0.34 £ 0.1 for F,, = 0.1). The strong
pinning data are shown in Fig. 1. One may expect that
the scaling exponents near threshold should be the same
for weak and strong pinning since they describe behavior
of the string at large length scales. At present our results
do not answer this question conclusively. The scaling ex-
ponents obtained for the two values of the pinning force
are consistent within experimental error, but more work
is needed to properly address this point.

In both weak and strong pinning regimes there is a cor-
relation length £ that diverges at threshold as £ ~ f7%,
with v the correlation length exponent. Away from
threshold & has the bare value & and is the smallest
length scale over which the shape of the string varies,
&0 ~ lp = (Fp\/p)~?/3 for weak pinning and & ~ 1/p for
strong pinning. Near threshold the string can get stuck
for some time in a region where pinning forces roughly
balance the driving force: a section of the string is coher-
ently pinned and its velocity vanishes. After a while the
string moves forward and jumps to a new configuration.
This behavior is displayed in Fig. 2, showing maps of
the local velocity of the string. White regions are regions
of zero velocity, while dark regions are regions where the
velocity is largest. The stationary pinned regions become
very large near threshold. The correlation length & is re-
lated to the linear dimension of these regions through the
exponents 7 and k discussed below.

When the string is in a sliding state (i.e., one with
vq # 0) the center-of-mass velocity ve m.(t) exhibits fluc-
tuations in time that become large near threshold. To
analyze the velocity fluctuations we have considered the

rms velocity, Urms = v/{[Ve.m.(t)]?) — (Ve.m.(t))2. After
initial transients, the probability of observing a given ve-
locity at any time is fitted well by a Gaussian shape, with
mean (Vem.) and standard deviation vpn,s (note that in
CDW models, distinct samples will have differing vrms).
This supports our expectation that the time to stopping
due to rare regions grows exponentially with the system
size. Just above the transition from pinned to unpinned
behavior, where the velocity is small, the velocity fluctu-
ations are of the same size as the velocity itself. Naively
the magnitude of the rms noise relative to the average
velocity is expected to scale as the number of correla-
tion lengths in the sample, Vems/va ~ (€/L)Y/2. On the
other hand, velocity correlations are not perfectly coher-
ent within a length £ [8]. As a result the effective coher-
ence length that determines the rms noise may be smaller
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FIG. 2. Maps of string velocity for f = 0.01 (top) and
f = 0.076 (bottom) and F}, = 0.1. The vertical axis is time,
while the horizontal axis is the position z on the string. Dark
regions indicate where the velocity exceeds 0.01. Maps are
shown for strings of size L = 4096 evolving over a time interval

At = 30.

than ¢ and vyms/vg ~ (£477/L)Y/2. Here 4 — 1 can be
thought of as an effective dimensionality, with 4 —n < d
and d the dimensionality (here d = 1). Using € ~ f7%,
our results for the ratio vems/vy are well described over
more than two decades in reduced field and a factor of 16
in system size by this form with v(4 — n)/2 = 0.5 + 0.05
for both Fj, = 0.1 and F, = 1.

Above threshold the correlation length & characterizes
the decay of velocity fluctuations. The equal-time veloc-
ity correlation function is defined as

Cv(z) = <’U(Z,t)’l)(0,t)> - <[ﬁ(t)}2)7 (5)

where the overbar denotes the spatial average over the
length of the string. We find that velocity correlations
scale with € according to Cy(2)/v3 ~ €4=771G,(2/€) (8],
with v = 1.05 £ 0.1 and = 3.12 £ 0.1, consistent with
the results obtained for v and 7 from the rms noise, as
required by (1/L) fOL dzCy(z) = v2,.. The scaling of
velocity correlations is shown in Fig. 3 for F,, = 1. The
figure also shows that the decay of correlations within
a length ¢ is fitted by a power law over more than two
decades, i.e., G, ~ z7%, with kK = 0.5+0.05. A power-law
decay of velocity correlations was also reported by Sibani
and Littlewood [13] for CDW’s. Much longer simulation
lengths are required for the convergence of the data at the
smaller value of the pinning force (¥, = 0.1). At present
the evidence for power-law decay of velocity correlations
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FIG. 3. The velocity correlation functions C,(z)/v3 for
F, = 1 and six different values of f collapse on one curve
when scaled as described in the text. The straight line shows

the power-law decay of the correlations at short distances,
Cy ~ 27", with kK = 0.5.

in this case is not as good as for the data displayed in
Fig. 3.

To analyze the distortion of the string configuration
under the competing action of disorder and elasticity, we
have evaluated the correlation function of the transverse
positions of points on the string at a distance z,

Cz(2) = ([2(2) — 2(0)]?). (6)

The size [ (2) of the transverse fluctuations of a length
z of string is I, (2) = \/Cz(2). Near threshold, where
the correlation length £ is of the order of the system
size, we find that the transverse correlation length I (z)
scales as [ (z) ~ 2X, with x = 0.97 £ 0.05 for both pin-
ning strengths. Since x is near 1, linear elasticity the-

ory is marginally self-consistent, in contrast with one-
dimensional CDW models [14]; the strain will become
large only in exponentially rare regions. Away from
threshold € is smaller than the system size and there is
a crossover from a regime where [ (2) ~ 2X, for z < £ to
a regime where [ (2) ~ z1/2, for z > ¢. The asymptotic
scaling behavior is therefore that of the KPZ equation.
On smaller length scales, however, quenched noise broad-
ens the interface. A similar crossover has been observed
in experiments on the roughening of the interface that
forms when a fluid displaces another in a porous medium
[4]. These experiments show a crossover from x =~ 0.81
at short length scales to x =~ 0.49 at large length scales.
Values of x in the range 0.5 — 1 have also been obtained

for stochastic growth models for the propagation of an
interface [15].
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