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Electron-Electron Correlations and the Aharonov-Bohm Effect in Mesoscopic Rings
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We study the effect of correlations on the Aharonov-Bohm effect in small one-dimensional rings.
We use the Luttinger and Hubbard models to describe electrons in the ring with two contacts on
opposite sites and a magnetic field passing through the hole of the circuit. We show that correlations
change the fundamental periodicity of the transmittance as a function of the magnetic Aux. We
interpret this new effect as a consequence of the charge and spin separation in the one-dimensional
conductors.

PACS numbers: 72.10.Bg, 75.10.Jm

The Aharonov-Bohm (AB) effect [1] in normal metal
rings has been the subject of many experimental and
theoretical works. The experimental setup consists of
a metallic ring with two contacts and a magnetic field

through the hole of the conductor as shown in Fig. 1.
In these circuits the AB effect consists of a small os-
cillation of the conductance as a function of the mag-
netic flux P. In ideal systems the periodicity of the
conductance is given by the flux quantum Po = hc/e.
Al'tshuler, Aronov, and Spivak [2] predicted that impu-
rities can change the period of the magnetoresistance to
Po/2. This effect has been observed experimentally in

small aluminum and silver rings at low magnetic fields

Most of the theoretical work on this subject was de-
voted to the study of the effect of impurities on these
systems [4]. The correlation effects have not been consid-
ered in detail. During the last years there has been great
activity concerning the problem of persistent currents in
isolated rings [5, 6]. In this context the effect of correla-
tions has been studied in some detail. In this problem
of persistent currents in the presence of a magnetic field
the whole physics is given by the evolution of the many-

body energies with the magnetic flux. In the AB effect
not only the energy levels are important, the matrix el-

ements corresponding to the creation and destruction of
electrons in the contacts also play an important role.
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FIG. 1. Schematic circuit used in the calculation: (a)
Original circuit including the ring and contacts; (b) equiv-
alent system obtained in second order in t'.

In this Letter we show that in one-dimensional con-
ductors correlations give rise to new effects which are
reflected on the effective periodicity of the conductance.

We consider the circuit depicted in Fig. 1(a) consist-
ing of a ring, two contacts, and weak links between the
contacts and the ring. Electron-electron correlations are
only included in the ring. We first present exact results
obtained for the I uttinger Hamiltonian. The case in
which the correlated electrons are described by a Hub-
bard Hamiltonian is also discussed.

The system is described by the following total Hamil-
tonian:

~ = ~ring + ~cont + Hlink~

where H„„ is a Hamiltonian describing the correlated
electrons in the ring of total length L. The magnetic
flux is included by taking boundary conditions given by
2nP/Po. The second term in Eq. (1) describes free parti-
cles in the contacts and is given by a tight binding Hamil-
tonian of semi-infinite chains with hopping t and on-site
energy cp. This energy is chosen to fix the same elec-
tron density in the contacts and the ring. Finally, H~;„k
is the Hamiltonian of the links between the ring and the
contacts, with a hopping matrix element t'.

We calculate the transmittance of the circuit using a
Landauer-type formalism. The calculation of the trans-
mittance in mesoscopic systems with interactions has
been the subject of many works in the past ten years
[7—9]. Although formal exact expressions for the conduc-
tance exist in the literature, they involve the knowledge
of exact propagators of the system including the contacts.
[10]. In what follows we consider the case in which the
coupling between the contacts and the ring is weak.

If t' « t the part H~;„k of the total Hamiltonian may be
considered as a perturbation. In second order in t' the
problem is equivalent to the one depicted in Fig. 1(b),
where t(w) is a frequency dependent hopping that con-
nects sites 0 and K + 1, and Z(w) is an effective on-site
energy. The frequency w is the energy of the incident elec-
tron supposed, to fix ideas, coming from the left. These
effective parameters are given by [11]
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t(~) = Lt' G(x = L/2, ~),
Z(~) = Lt' G(x = 0, ~),

(2)

(3)

where G(x, ~) is the Green function in real space and fre-

quency of the isolated ring. In terms of these quantities
the transmittance can be expressed as

4t' sin2 (k)!t(~)!'
!!t(~)!' —[~ —s(~) + «'"]'[ (4)

where k is the momentum of the incident electron taken
as the Fermi momentum k~. For noninteracting systems
this expression is exact.

The whole problem then reduces to calculate the Green
functions of a finite ring with arbitrary boundary condi-
tions. For the sake of clarity we first discuss the case
corresponding to the Luttinger model. The ring Hamil-

tonian then reads

r (H»„z ——vF g k(ar k ar k ~ —a2 k a2 k ~)
k, o.

+27rrt)VF(N+ —N )/PpL+ H;o) I (5)

the first term describes the kinetic energy of the bare
electrons. Here ai k and a2 k create right and left

) ) ) t

going electrons, respectively. The momentum k is given
by 2)rn/L with n an integer number. In the presence of
a magnetic Hux all the one-particle energies are shifted
by +2rrpvF/ppL. The effect of the magnetic flux is then
given by the second term of Eq. (5) where N~ is the
total number of electrons traveling in each direction. The
last term of the Hamiltonian describes the interaction
between electrons.

!
Following Ref. [12] we obtained for the one-particle

Green function the following result for!P! ( Pp/2:

6!(—g)
G(x, t) = e'"F*e"—&o"I [(1 e ~ [))—ii~ —o.&)])(1 e

—~o [q —iiz —U. t)] )]1/2

1
X

[(
~ )2(1 e-~[~—i[*—o.&)])(1 e

—~[~+ii*+U.i)])]~

6(t) + x ~ —x,
complex conjugate (6)

Here v, and v, are the spin and charge velocities, re-
spectively, q is a convergence factor, and o. is a small
number that depends on the interactions. This expres-
sion is exact for the isolated ring. Note that for P = 0,
finite x and t and for L —+ oo this expression reduces to
the one of Refs. [12, 13] and for commensurate charge
and spin velocities it is periodic in time.

As we mentioned, Eq. (6) is valid when the magnetic
flux P is smaller than half a flux quantum. For the gen-
eral case one should note that at P = Pp/2 there is a level
crossing and for P ) rtp/2 ithe Fermi surface is shifted
in 2)r/L. The Green function for Pp/2 ( P ( Pp is
given by Eq. (6) if P is replaced by P —Pp and kF by
kF + 27r/L for right and left going electrons, respectively.
These changes in kF give rise to a global factor of the
form exp ()27rx/L). We used this expression to calculate
the transmittance. The important physical ingredient
induced by the correlations is the difference between the
charge and spin velocities. These velocities depend on
the particle density and the correlations. As we discuss
below, the charge-spin deconfinement has important ef-
fects in the transmittance.

To calculate the transmittance we have to Fourier
transform the Green functions. We resort to an approx-
imation similar to that used in Ref. [14] in which the

! main idea is to take advantage of the smallness of the
parameter a and consider only the dominant poles in
G(x = L/2, t) that contribute to the time integral. As
an example, we may consider a case in which v, = 3v„
the dominant poles in G(x = L/2, t) come from the di-
vergencies of the first line in Eq. (6) that are of the form

1/(t —t„) with t~ = 3I(2n+ 1)/2v, and n an integer.
These are the times at which the spin and charge get to-
gether at the right contact of the ring (x = L/2). The
other divergencies of this term are of the form (t —t )
with t = L(6m + 1)/2v, and give only small corrections
to the Fourier transform.

The more important contributions to t(u) are then
those in which both the charge and spin excitations prop-
agate from one contact to the other arriving at x = I /2
at the same time. However, due to the difference in veloc-
ities, charge and spin excitations make a different number
of loops in the ring and the time required for this prop-
agation can be much longer than L/2vF. As we discuss
below, this effect is the origin of the anomalous field de-
pendence of the conductance.

For the case of charge and spin velocities satisfying
v, /v, = p/q, where p and q are small odd numbers, we
0btalll

t'2I. f e'~
&I~)= „„„,I ). „. ..~ . +IN —0) + ). In

—
nl)

[k[&k+ - T) &iboTo ski(kF

where Tr is the period of G(x = L/2, t)!y—p and Tp = L/vF. A similar expression is obtained for Z(w) although f»
the evaluation of this quantity we take an energy cutoff.
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FIG. 3. Same as in Fig. (2) with parameters correspond-
ing to Ti/Tp = 2.9 (top) and 5.5 (bottom).

0
0. 0 0. 5 1.0

FIG. 2. Transmittance normalized to its value at zero flux
for diferent values of the parameters. The parameters were
chosen to get Ti/To = 1, 3, and 5 from top to bottom. The
case Tz/Tp = 1 corresponds to the noninteracting system.

We evaluate the transmittance iT(w)
~

obtained in this
way for different values of the parameters. To present the
results we have averaged the transmittance over a small
~ interval larger than the characteristic energy distance
between the levels of the isolated ring.

In Fig. 2 we present results for three different sets of
parameters. They were chosen in order to satisfy the re-

lation T1 ——mTo with m an integer. For the uncorrelated
system v, = v, = v~ (Ty = Tp) and the transmittance
is periodic in P with period Pp . We get quantitative
agreement with the results obtained with conventional
methods when the ring is described by a tight-binding
Hamiltonian. For the correlated system the transmit-
tance oscillates with period Pp jm. This is a new effect
that was missed in the past. In general Ti will not be
a multiple of To and the transmittance oscillates with a
fundamental frequency Ti/Tpgp for —Pp/2 & P & Pp/2,
at P = +Pp/2 there is a change in the phase of the oscil-
lation as shown in Fig. 3. In this case the real period of
the transmittance is one fiux quantum.

The results presented above correspond to v, /v,
(2n + 1)j(2m + 1). For (v, /v, )+i = 2n the transmit-
tance is very small since the charge and spin excitations
never get together at z = I/2 and the poles of the form

1/(t —t„) never occur in G(x = L/2, t).
For the case of electrons described by a Hubbard model

with on site interaction U we expect essentially the same
result. On one hand, the Green functions obtained for

large x also have the same form as for the Luttinger
model I14—16]. On the other hand, the low energy ex-
citations with momentum +k~ that contribute to
G(x = L/2, t) are also shifted rigidly by the magnetic
fiux. Following Ref. [15] we find that this shift is given

by +7rgv, (2/PpL, where the dressed charge ( is a numer-
ical constant that depends on the electron density and
on the interaction U. Consequently, in the expression of
the effective hopping t(w), v~ is replaced by v,( /2 and
the characteristic time Tp is given by Tp = 2L/v, (s. In
the present case, due to the discretization of the space,
we expect the behavior shown in the figures regardless of
the rationality of v, /v, .

In summary, we have shown that correlations may
change the fundamental AB periodicity of the conduc-
tance. We have presented results corresponding to the
Luttinger and Hubbard models. In both cases corre-
lations produce charge and spin separation in the one-
dimensional conductors and we have shown that lead-
ing contributions to the transmittance are given by the
propagation of charge and spin excitations that arrive at
the same time to the right contact of the ring. When
v, g v, these leading terms correspond to processes in
which charge and spin excitations make a different num-
ber of loops in the ring. This already suggests that the
effective periodicity will be affected. However, a naive
picture in which the change in the phase of the wave func-
tion is only given by the number of times the charge ex-
citations surround the magnetic fiux is not correct. This
is clear in a slave boson approach, where the occurrence
of the gauge field couples both the charge and spin exci-
tations to effective fields.

In general the ratio v, /v, will not be of the form p/q
with small p and q. The characteristic frequency of the
conductance as a function of &P will then be large. That
means that experimentally the many-body effects dis-
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cussed above may only give some structure in the noise
spectrum.

Finally, our expression for the transmittance suggests
that the charge and spin deconfinement is not an essential
ingredient for the change in the periodicity of ~&(w) ~. If
there were a mechanism able to change the Green func-
tion periodicity T~ and the characteristic time To in a
different way without producing charge and spin decon-
finement it would give rise to an effect similar to the one
discussed above. In any case charge and spin separation
is a very efBcient mechanism to change T~ since a rela-
tively small difference in the charge and spin velocities
can make Tq )) To and produce a fundamental period
much smaller than Po.
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