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New Random Matrix Theory of Scattering in Mesoscopic Systems
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A previously unnoticed group structure for the transfer matrices of mesoscopic systems is identified.
From the invariant measure for this group and a maximum entropy ansatz we derive the Laguerre en-
semble of random matrices. A comparison with the Hofstadter model shows that the Laguerre ensemble
provides a quantitative description of scattering in mesoscopic systems under applied magnetic fields.
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The electronic and magnetic properties of mesoscopic
systems have been the object of considerable theoretical
and experimental study in the field of solid-state physics.
At low temperatures (typically millikelvin) and small sys-
tem sizes (typically nm) mesoscopic systems can be
modeled as phase coherent elastic scatterers and inelastic
and other phase breaking processes, ignored or included

by naive averaging arguments. Numerous novel physical
phenomena are observed or are predicted in this regime:
universal conductance fluctuations (UCF), Aharonov-
Bohm conductance oscillations, chaotic boundary scatter-
ing, persistent currents, and anomalous magnetic suscep-
tibilities. In attempting to explain the first of these,
UCF, lmry [l] made a connection with the theory of ran-
dom matrices. This was further developed by Mello et al.
[2] and Muttalib et al. [3]. Underlying both approaches
was a particular group structure in the scattering theory.
In this Letter we identify a second, distinct and as far as
we know previously unnoticed group structure in the
problem which leads to an alternative random matrix
theory of the scattering. From the group structure, and a
maximum entropy ansatz, we show that the elastic
scattering in a disordered mesoscopic system can be
quantitatively described by the Laguerre ensemble of ran-
dom matrix theory.

The scattering in a mesoscopic system may be de-
scribed by a 2Nx2N transfer matrix T relating the in-

coming and outgoing electron fluxes at say the left (i,o)
of the system to those at the right (i ', o'),

r

0

where N refers to the number of propagating channels.
We wish to determine the probability distribution P(T)
of the transfer matrix (or some related matrix) given a
random distribution of elastic scatterers. This is expressi-
ble as a product of two factors P(T) =p(T)p(dT) where
p(T) is a probability density and p(dT) is a measure or
"volume element. " This separates the analysis into two
stages. First the choice of the measure and second the
determination of the density. If the matrices T form a
group G we can fix p(dT) uniquely by demanding that it
satisfy lt(dT) =P(dT') if T'=T*Tp for any fixed Tp 6 G

and V T C G, i.e., that the measure be invariant under the
group operation, denoted by +, for all elements of the
group. A unique group measure exists for every group
and provides a natural choice for p(dT) based on con-
siderations of symmetry alone.

In the present problem there are two symmetries to be
considered; conservation of Aux and time-reversal symme-
try. The first, satisfied under very general circumstances,
forces the T matrices to be symplectic. More explicitly
the T matrices must satisfy

1 0
Ic TIcT, Ic 0 1

The second, time-reversal symmetry, may be broken by
the application of a magnetic field. For simplicity we
consider first the case where time-reversal symmetry is

broken, returning to the time-reversal symmetric case
later. It is central to the previous approaches [2,3] that
the matrices T satisfying (1) form a group under multi-
plication. The invariant measure for this group is [2]

u~ 0 Ql+X Jk
4l+ X, ,

u3 0

0 u4
(3)

where the u's are N x N unitary matrices and X is an
N & N positive definite diagonal matrix with elements

The decomposition is not unique but it can
be made so by fixing the phases of the first element in
each column of u~. The factor p(du) denotes the invari-
ant measure for the unitary group [5] and p(d[u~]) is a
related measure, discussed by Bronk [5], which takes ac-
count of the N additional constraints on u]. The physical
meaning of the parameters k~, . . . , k~ can be made clear-
er by calculating the conductance g of the system. For
two probe measurements we have [6]

lV

g =tr[tt t] = g
I -] 1+~i

1=2

where C is a constant. The parameters X], . . . , k~ occur
in the decomposition of T as [4]
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with g in units of e /h.
Unfortunately, though the T form a group under multi-

plication, the density of the variable k does not corre-
spond to that of any standard random matrix ensemble.
Muttalib et al. [3] overcame this difficulty by resorting to
a very general class of ensemble introduced by Balian [7].
The density p(T) is fixed by supposing that the ensemble
average level density o(X) is known a priori. The entro-
py of the ensemble 5,

g[p(T)J =„' p(T)lnp(T)p(dT),

is then maximized subject to this constraint. Note that
this procedure does not introduce any further correlation
terms into P(t) other than those already appearing in

p(dT). This makes the importance of the group struc-
ture clear: The correlations are determined solely by the
group structure and its associated invariant measure.
While this would not hold for more general constraints, in

practice these are not usually tractable.
We are not in a position to explain our new contribu-

tion. We have identified a second group structure in the
problem and found that this leads to an alternative ran-
dom matrix theory of the scattering statistics. Using the
invariant measure of this group and a maximum entropy
ansatz we derive a quantitative description of the scatter-
ing in terms of the Laguerre ensemble of random matrix
theory. Consider the matrix 0 =lnTTt. From (3) and
the properties of the singular value decomposition [8] we
can show that the space of matrices 0 is identical to that
of matrices of the form

0 N

M 0

where R and I stand for real and imaginary parts. This is
identical to [5]

N

(d&) =CH
I

' —,'I'H d u(d[
i (j i=1 (5)

Since matrix multiplication is not commutative the group
formed by 0 under addition is not isomorphic to the
group formed by T under multiplication and so the in-
variant measures (2) and (5) are not equivalent.

Having determined the invariant measure for the ma-

with m an NXN arbitrary complex matrix. Since T is
symplectic the eigenvalues of 0 occur in pairs of opposite
sign and are (v, —v), where the v are related to the k
defined in the decomposition (3) by

cosh v —
1

2

Under addition such matrices form a group, the invariant
measure of which is

trices 0 we must now determine their probability density
p(t1). To do so we shall invoke a maximum entropy an-
satz. We are not able to give any a priori justification for
our ansatz but we shall show that it yields an accurate
description of the diA'usive regime. We impose as a con-
straint a fixed value of ( —,

' trA ), where angular brackets
refer to an ensemble average, and maximize the entropy
of the ensemble S[p(A)] [7]. If the only symmetry con-
straint on the matrices A were that they be Hermitian,
this procedure would yield the Gaussian unitary ensem-
ble. For matrices of the form (4) the result is related to
another standard ensemble: the Laguerre unitary ensem-
ble (LUE) [5]. We find

P(&) =Ce '""'p(dn),
which is our central result. Integration over the unitary
matrices u gives the distribution of the v,

(6)

with P =2. An obvious change of variable transforms this
into the usual form of the LUE distribution. The distri-
bution is completely determined by a single parameter a.
In principle this is related to the condition on the trace,
(trA ) =N /a, but we can also regard a as being deter-
mined by (g). In the large N limit (g) = (4/tr) J2Na.

We shall now attempt to justify the maximum entropy
ansatz by comparing the LUE distribution (6) with the
distribution obtained from a microscopic Hamiltonian
model: the Hofstadter model [9]. We consider a bar
geometry [1 ~ x ~ L„1 ~ y ~ L~] which is infinite in z
and calculate the transmission matrix for electrons in-
cident from z & 0 to z '& L, using a Green's-function
technique [10]. In the region 1 &z (L, the diagonal
Hamiltonian matrix elements are taken as random with a
uniform distribution of width 8' about the origin. The
Fermi energy is set at the band center and the magnetic
field 8 is measured in units of Aux quanta per lattice cell.

The density o(v) for the LUE is given in terms of the
Laguerre polynomials

A —
1

cr(v) =4ave '" g L„'[2av'].
n=0

In Fig. 1 the densities of the LUE and the Hofstadter
model are compared for a system in the dift'usive regime,
(g) =3.4. The results shown are for a 2D sample; similar
results are obtained for 3D and quasi-1D samples. The
parameter a is determined from (g). Quantitative agree-
ment is obtained especially for the smaller v which dom-
inate the conductance. The disagreement at large v is ab-
sent when T can be written as a product of transfer ma-
trices associated with scatterers in layers at each z. For
the Hofstadter model this occurs when N=L&Ly a con-
dition not satisfied in general. In the large N limit the
asymptotic form for the level density is a quarter circle on
the positive v axis.
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FIG. l. The density a(v) for the LUE and the Hoftstadter
model with parameters L„=40, L~ =1, L, =40, B =0.02, &=2,
and W =20.

F1G. 2. The two point correlations Rq(v, v') with v'=0. 5 for
the Hofstadter model (histogram), the LUE (solid line), and
the theory of Muttalib et al. (dashed line). The Hofstadter
model parameters are the same as in Fig. 1.

The two point correlation function, Rq(v, v'), is ob-
tained from (6) by integration over N —2 variables. For
the LUE a simple expression exists in terms of the
Laguerre polynomials [1 1]. A typical result is shown in

Fig. 2. A quadratic eigenvalue repulsion typical of sys-
tems without time-reversal symmetry is evident. For
comparison we give the result of the theory of Muttalib et
al. [3] calculated by taking the density in Fig. 1 as the
constraint. The new theory is in slightly better agreement
with the numerical data. Note also that the calculation
of the correlations with the theory of Muttalib et al. re-
quires a prior knowledge of an entire function, o(X).
Their calculation with the new theory, making use of a
standard ensemble, requires a prior knowledge of only the
mean conductance (g).

A more stringent test of the quantitative accuracy of
the LUE correlation function is the calculation of var(g)
which involves the integration of R2 over the full range of
v, v'. For g»1 and N))1 the result is independent of g
so that the LUE reproduces the observed UCF in agree-
ment with Imry's [1] original proposal. The calculated
magnitude of the Auctuations is in close agreement with
diagrammatic perturbation theory [12] and numerical
data for the Hofstadter model in the quasi-1D limit, sug-
gesting that the correlation function may be exact in this
limit. The shape dependence of var(g) is not recovered
since only a single parameter equivalent to (g) appears in

the distribution.
In the absence of an applied Aux the system will be

time reversal invariant and fall into one of two symmetry
classes, orthogonal or symplectic. We leave the details
for a longer work but the distribution is as (6) with P =1
for the orthogonal symmetry (LOE) and P=4 in the
symplectic case (LSE). The two cases are distinguished
by the strength of spin orbit scattering in the system,
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FIG. 3. The distribution of v;„ for the Laguerre unitary
(LUE) and orthogonal ensembles (LOE) and for the Hofs-
tadter model with parameters L„=40, L~ =1, L, =40, 8'=2,
A =40, and magnetic fields as sho~n.

weak or absent for the orthogonal case and strong for the
symplectic case. The expressions for the density and
correlation functions are more complicated but a simple
result for the spacing of v;„=min(vi, . . . , vtv) from the
origin can be obtained,

+it a~min
p (vmin ) =2NPa vmine

In contrast to the spacing between consecutive v, which is
given by the Wigner surmise, the form is unchanged by
the breaking of time-reversal symmetry. This prediction
is checked in Fig. 3 where the distribution of the smallest
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v is compared before and after an orthogonal to unitary
transition driven by a magnetic field. As predicted, only
the scale, not the form, changes.

We discuss briefly the limitations of the LUE. The
lack of any prior justification for our choice of constraint
means that our discussion must be somewhat empirical.
In fact, our choice of constraint was motivated by the ob-
servation in the course, of course of computer simula-
tions, that in the diff'usive regime the density o(v) can be
very well approximated by that of the LUE. It is clear,
however, that in other regimes the LUE is not appropri-
ate. First in the long length limit, 1.))g where g is the
localization length the spectrum becomes more rigid than
is consistent with the LUE in accordance with Oseledec s
theorem [13]. Second on the localized side of the metal
insulator transition, the strong disorder limit, a gap ap-
pears in a(v) at the origin. There is no such gap in the
LUE spectrum. It is possible that the imposition of addi-
tional or alternative constraints in the maximization of
the entropy would yield the correct distribution in these
cases.

To conclude a new random matrix theory of elastic
scattering in disordered mesoscopic systems was pro-

posed. The new theory, closely related to the Laguerre
ensemble of random matrices, permits a simpler descrip-
tion of the scattering statistics than was possible hitherto.
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