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Should all Surfaces be Reconstructed?
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The driving force for surface reconstruction is shown to be given by the (usually nonzero) difference
between the surface energy and stress, leading to a ground state characterized by an isotropic stress ten-
sor with vanishing shear components. The analytic results, illustrated by atomistic simulations of the
missing-row reconstruction of the Au(110) surface, permit likely reconstructions to be identified based
on the stress and energy in the unreconstructed surface.

PACS numbers: 68.35.Bs, 68.35.Gy, 68.35.Md, 82.65.Dp

The apparently widespread existence of surface recon-
structions has raised some important questions concern-
ing the underlying driving force. While it is clear that a
lowering of the excess free energy represents the ultimate
driving force, it is also widely recognized that the surface
stress should play an important role as well [1-7]. For
example, Herring [1] suggested that the relief of surface
stress might provide a mechanism for the creation of an
ordered array of surface defects, and Gossmann et al. [2]
showed that compressive strain can induce the well-
known 7% 7 reconstruction of Ge(111) surfaces. Dodson
[4] pointed out that the existence of a surface stress
should give rise to a surface strain associated with the
changing bond lengths of the surface atoms. The impor-
tance of stress domains in the reconstruction of Si sur-
faces was recognized by Alerhand et al. [5], a concept
that was recently applied to the Au(111) surface [6].
Here we formulate a thermodynamic framework which
exposes an intricate interplay among surface energy,
stress, and strain in surface reconstruction. By identify-
ing the driving force as the difference between the surface
energy and stress, we show that reconstruction permits
the surface to evolve towards a “liquidlike” ground state
in which the stress is isotropic, with a vanishing shear
component, and equal to the energy of the unreconstruct-
ed surface. This analytic result permits promising candi-
date surfaces and likely mechanisms for reconstruction to
be identified based solely on the stress and energy of the
unreconstructed surface. Because of the relatively simple
assumptions involved, the present theory should be valid
for all types of interface phenomena involving changes in
the excess stress and free energy, such as segregation, dis-
ordering, and wetting, to name a few.

That the thermodynamic concepts of surface energy, 7,
surface stress, o,p, and surface strain, &,g, are intimately
connected was first pointed out by Shuttleworth in 1950
[8]. Starting from the thermodynamic definition of stress
as the strain derivative of the free energy, he showed that
for an unstrained surface (indicated by the subscript 0)

9(A4y)
66,,,3

(O’ap)() =4 !

]8aﬂ-0=y06aﬁ+(a')//a€ap)0 (n

(a,B=x,y),

where A is the surface area, 645 is the Kronecker delta,
and (o48)0=0,5(¢=0); a and B label directions in the
x-y plane of the surface (with the z direction defining the
surface normal).

In a fully relaxed surface the three elements of the
stress tensor involving the surface normal (oy;, o)., and
o2;) vanish and o4 has generally only three independent
components, the diagonal stresses oxx and oy, and the
shear stress ox,. A liquid, by definition, cannot sustain a
shear stress (i.e., oxy =8%/9&yy, =0); moreover, when a
liquid film is stretched, atoms move out from the bulk,
rendering the surface structurally and energetically un-
changed (i.e., 3y/0€,,=0). The surface stress in Eq. (1)
then becomes isotropic (i.e., 0zq=7y84), €xpressing the
well-known fact that the processes of creation of a sur-
face (by bond breaking) and deformation (by straining)
are identical [8]. Because of limited atom mobility, in a
solid the breaking of bonds perpendicular to the surface is
distinct from the straining of bonds parallel to the sur-
face, giving rise to the distinction between the scalar
quantity y and the tensor quantity o [8]. In the following
we will apply the usual sign convention, with positive
stresses indicating that the surface is under tensile stress,
i.e., favoring a smaller lattice constant.

To gain a better intuitive understanding of Shuttle-
worth’s relationship, we first investigate the unrecon-
structed (110) surface of Au [see Fig. 1(a)l, whose well-
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FIG. 1. (a) Structure of the unreconstructed (110) surface

in Au; (b) reconstructed surface in which alternate (110) rows
are missing.
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known ‘“‘missing-row” reconstruction [to be discussed
later; see Fig. 1(b)] has been thoroughly investigated
both experimentally (see, e.g., [9,10]) and by means of
computer simulations [11,12]. In all our simulations, a
slab consisting of sixty (110) planes (i.e., thick enough to
avoid any interaction between the two slab surfaces) was
relaxed at zero temperature by means of an embedded-
atom-method (EAM) potential fitted to represent Au
[13] which was smoothly shifted to zero at the cutoff ra-
dius, R, =1.36ay, to avoid discontinuities in the energy
and forces. When simulating the unstrained surface, the
x-y dimensions of the thin film are held fixed at the zero-
temperature lattice parameter, ap=4.0829 A, at which
the perfect crystal is stress free for this potential and
cutoff procedure. The relaxed energy and stresses thus
obtained for the Au(110) surface are listed in Table I.
[We note that in the coordinate system shown in Fig.
1(a), with x and y parallel to (110) and {001), respective-
ly, o4, vanishes.]

According to Eq. (1), the difference between the diago-
nal surface-stress components and the energy is given by
the strain derivatives of the energy. To determine, for ex-
ample, 0y/d¢&,x, we strain the slab in the x direction to
the new lattice parameter, a (i.e., by a strain &, =a/ag
— 1), while keeping the y lattice parameter fixed at ay,
with subsequent relaxation of the atom positions and o,.
Figure 2 shows the energies y(exx) and (g, ) thus ob-
tained. Three features exhibited in Fig. 2 are particularly
interesting:

(a) Starting from the unstrained state (indicated by an
arrow), y(gx) increases sharply for & > 0, while y(g,,)
decreases slightly for g, >0 until it reaches a mini-
mum for an expansion of g, =0.0005; by contrast,
y(g.x) reaches its minimum under compression, at &xx
= —0.0014.

(b) The slopes at zero strain, (9y/dexx)o and (87y/
d¢,, )o, extracted from Fig. 2 (see Table 1), agree quanti-
tatively with the values obtained directly from Shuttle-
worth’s relation (values in parentheses) using the stresses
and energy listed in Table I.

(c) The functional forms of both y(ex) and y(e,, ) are
extremely well represented by second-order polynomials
(solid lines), evidence for linear elastic behavior.

According to linear elasticity theory, for small strains y
may be written as a second-order Taylor expansion about
=0,
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FIG. 2. Relaxed zero-temperature energy of the Au(110)
surface vs strain (see also Fig. 1). The solid lines represent
quadratic least-squares fits to the data; the arrow indicates the
unstrained state.
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The quadratic term represents the elastic energy associat-
ed with straining the surface. Analogous to the definition
of the bulk elastic constants, Cagyy, as the second deriva-
tives of the free energy per unit volume with respect to
the strains, it is related to ‘“‘surface excess elastic con-
stants,” Sepey =027/0€,50€,y, i.c., the second derivatives
of the excess free energy per unit area (in Voigt notation,
with xx— 1, yy— 2, and xy — 6),

S,‘j =Saapp=62)’/a&‘aaa£pp (i,j = 1,2) s
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Analogous to the (6x6) tensor C;; (with three indepen-
dent elements in a perfect cubic crystal), S;; is a sym-
metric (3% 3) tensor characterizing the elastic response of
the surface to the normal strains &x, and g, (S1, Si2,
and S»;) and the shear strain &, (S¢); i.e., with four in-
dependent elements in a cubic system. The values for Sy,
and S, extracted from the least-squares fits in Fig. 2
(solid lines) are listed in Table II. As one would expect
for a perfect crystal, the surface is stiffer in the (110}
direction, i.e., for straining directly towards the nearest
neighbors, than in the (001) direction, for straining to-
wards the second-nearest neighbors (see Table II).
Equations (1) and (2) have three important conse-
quences. First, by equating all partial derivatives of Eq.

TABLE 1. Relaxed zero-temperature energies, stresses, and strain derivatives for the un-
reconstructed Au(110) surface and for the missing (110) and missing {001) row reconstructions
[see Fig. 1(b); in units of 107® J/m?=erg/cm?. The values for the first derivatives in
parentheses are obtained from Shuttleworth’s relation, Eq. (1).

Surface type Yo (oxx)o (a0 (By/9exx o (87/9¢yy )0
Unreconstructed 958.5 1514.6 859.9 556.6 (556.1) —97.7 (—98.7)
(110) reconstructed 928.6 1597.5 886.8 (668.9) (—36.8)
{001) reconstructed 1110.7 1200.4 1074.2 (89.7) (—36.5)
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TABLE II. Surface elastic constants of unreconstructed
Au(110) (in units of 10° ergs/cm?) obtained from the quadratic
fits in Fig. 2. The values in parentheses represent the slopes of
the stress-strain curves in Fig. 3 [see also Eq. (7)].

Sn =627/831%x SZZ=627/68}y Slz=az}'/65xx68yy
4.04 (4.03) 1.83 (1.82) < (1.84)
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to zero, we obtain the equilibrium strains for which the
excess free energy reaches a global minimum,

eMin = — (S 1) 4ppy (9 7/Be4p)o (5)

where S 7! represents the surface excess elastic-compli-
ance tensor (from which surface excess elastic moduli can
be determined). The corresponding energy decrease is
given by

(&™) — yo= % (37/eap)ocly"
= — L (9786200 ~Vapey @7/860)0.  (6)

Table III shows the values for the optimum xx and yy
strains and the related energy decreases thus obtained for
the unreconstructed Au(110) surface, using the elastic
constants in Table II and the values for (3y/dg,s)0 in
Table I. [We note that these strains do not correspond to
the global minimum at which all/ partial derivatives van-
ish because, when straining the above slab in one direc-
tion, all other strains were held fixed at zero; see also Egs.
(5) and (6) for this case] As expected, the predicted
strains and energies agree very well with the positions and
depths of the minima in Fig. 2.

Second, given that the surface stresses are the strain
derivatives per unit area of the surface free energy, the
quadratic form of the energy in Eq. (2) implies linear
stresses; i.e.,

O'ap(s) =(0aﬁ)0+SGﬁ¢V£¢W' (7)

Formally, Eq. (7) may be viewed as a linear-elastic ex-
tension of Shuttleworth relation (1) to finite strains.
That for the case of the Au(110) surface oy, and oy, are,
indeed, linear functions, for example, of &, is shown in
Fig. 3; equally perfect linear plots are obtained for
oxx(g,,) and o,,(g,). The slopes of the linear fits
through the data listed in Table III (values in paren-
theses) agree well with the elastic constants extracted
from Fig. 2.

Third, Egs. (1), (5), and (7) may be used to determine
the magnitude of the surface stress at the global
minimum:

O_aﬁ(smin) =705aﬂ=(0'ap)0_ (8;'/65.,,,)0. (8)

Equation (8) represents the main result of this paper
stating that, similar to a liquid, in its globally relaxed
state the stress in an anisotropic surface is isotropic and
diagonal (i.e., with a vanishing shear component), and
given by the energy, 7o, of the unstrained surface. More-
over, the driving force towards this equilibrium state is
given by the magnitude of (8y/d¢,5)0 [see Eq. (8)], as is
the elastically relaxable energy of the surface [see Eq.
(6)]1. The magnitude and anisotropy of (8y/8¢e4s)0 hence
provide a quantitative measure of how far the surface is
removed from its state of lowest free energy and optimum
stress. Consequently, it is not the sign of the stress itself
[4] but that of (c4s)o— 7004p that determines whether the
surface energy can be lowered by strain. Moreover, the
tensor (y/0e4p)0 provides directional information on the
strains leading to this isotropic ground state: surfaces or
strains for which (o,8)0 > 70 li.e., (87/8€45)0> 0] can be
relaxed by contraction (or by an increase in the surface
density), while surfaces or strains for which (o48)0 < 70
favor expansion (i.e., a decrease in surface density).

In practice, the surface energy cannot simply be re-
laxed by a macroscopic strain imposed on the system as a
whole (surface+bulk). Instead, relaxation can occur via
atomic-level strains associated, for example, with recon-
struction, ordered arrays of point defects, or impurity
segregation. For example, a surface that favors expan-
sion [(8¥/8€,5)0 < 0] can decrease its density by removal
of atoms. To illustrate this mechanism, we now consider
the (110) missing-row reconstruction of the Au(110) sur-
face [see Fig. 1(b)] [9-12]. As in previous simulations of
this reconstruction [11,12], alternate rows that are re-
moved from the top surface of the slab are attached, in
proper registry, to the bottom surface, resulting in two
identical slab surfaces.

According to Table I, in the unreconstructed surface,
(8y/8€,,)0 <0; i.e., the surface favors a lower density in
the y direction. Indeed, in agreement with the previous
simulations [11,12], removal of alternate (110) rows
lowers the energy from 958.5 to 928.6 ergs/cm?2. Also, as
expected from Eq. (8), the reconstruction results in (a)
an increase in o, from 859.9 to 886.8 ergs/cm?, as it ap-
proaches the energy of y9=958.5 ergs/cm? of the un-
reconstructed surface, and (b) a consequent decrease in
the magnitude of the driving force, (8y/8¢,,)o (from
—98.7 to —36.8 ergs/cm?) as it approaches zero. A

TABLE II1. Strains, eMin at which 8y/0&.q vanishes for the unreconstructed Au(110) sur-
face; y(efx") and o(efi™) are the related energies and stresses in units of ergs/cm? (see also

Figs. 2 and 3).
gmin epin y(lim) — ¥ y(elin) — yo o(gmin ol(ghin
—0.00138 +0.00053 —0.384 —0.026 957.9 955.7
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complete removal of the driving force would probably re-
quire further, albeit perhaps rather subtle, structural
changes in the surface involving, for example, ordered ar-
rays of vacancies.

One might ask whether removal of (001) rows [parallel
to x; see Fig. 1(b)] lowers the energy as well. The fact
that (8y/0&xx)0> 0 suggests that the surface would, in-
stead, prefer to increase its density; indeed, as seen from
Table I, the energy increases significantly for this type of
reconstruction.

In a recent paper, Cammarata [7] also addressed the
elastically relaxable energy of the surface. This treat-
ment considers the total surface stress (not the difference
between the surface stress and surface energy) as the
driving force but also includes barrier energies to recon-
struction of a surface layer due to dislocations. Whether
such barriers do indeed exist is an interesting question,
particularly since it appears relatively easy for the surface
to incorporate long-range ordered arrays of point defects
[1], with the removal of entire rows of atoms representing
a geometrically special case.

One of the limitations of the above approach clearly
lies in the difficulty in assigning a quantitative value of
the atomic-level strain to a particular reconstructed
geometry. For example, one can easily envision unsuc-
cessful reconstructions suggested by the direction in
which (8y/8¢,5)0 decreases but for which the energy
overshoots (see Fig. 2), leading to a higher energy. To
avoid this effect, one could manipulate the magnitude of
this “‘reconstruction strain” by considering a variety of
different reconstructions with larger and larger unit cells,
i.e., involving a smaller and smaller change in the
effective surface density. Observations of rather complex
reconstructions involving large unit cells, such as the
Au(111) surface (see, for example, [14]), provide evi-
dence that reconstructions involving only small surface
strains may provide an important mechanism for sur-
face-stress relaxation.

We conclude by pointing out that, at least for metal
surfaces, a vanishing driving force, (0,5)0— Y004p, ap-
pears to be more of an exception than a rule [3,15]. The
question therefore seems to be why more surfaces have
not been found to reconstruct. One of the answers might
be related to experimental limitations in the detection of
ordered arrays of surface point defects [1]. Another
cause might be the competition from other mechanisms
involving, for example, surface disordering, segregation,
or roughening, which can also relax the stress and energy.
We finally mention that, because of the relatively simple
assumptions in Egs. (2) and (7), the present theory
should provide a framework for the investigation of all
such interfacial phenomena driven by changes in the in-
terfacial stress and energy; also, it is not limited to free
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FIG. 3. Relaxed zero-temperature normal surface-stress

components, oxx and oy,, against (001) strain (see also Fig. 1).
The solid lines represent linear least-squares fits to the data.

surfaces but should apply as well to all types of crystal-
line, amorphous, and crystal-liquid interfaces.
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