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Ultrametricity, Incommensurability, and Field-Induced Transitions
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The charge- or spin-density-wave formation in one-dimensional electron systems under an incommens-
urate potential is shown to be characterized by infinitely many order parameters and infinitely many
mean-field solutions with almost degenerate energies. The complexity of the solutions is described by ul-
trametricity. The observed field-induced spin-density-wave transition of 2D systems is discussed in this
context.
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The charge- and spin-density-wave states (CDW or
SDW) are a manifestation of Fermi surface instabilities.
The so-called Peierls theorem ensures that an electron
system is always unstable toward density-wave (DW) for-
mation, provided that the Fermi surface satisfies an ap-
propriate nesting condition. This condition is easily
satisfied for low-dimensional systems, of which we know a
wide variety of examples from inorganic to organic ma-
terials. The CDW or SDW states (2kF Peierls state) in
one-dimensional systems are unambiguously described by
an order parameter (OP) Ag corresponding to the nesting
vector Q =2kF, which is uniquely determined by the Fer-
mi wave number kF controlled by the electron filling.
Whereas a number of OP's may appear in this case, the
wave numbers of OP's are limited to the harmonics of
2kF. We already understand this situation completely

Here we try to establish the following novel aspects
concerning DW formation in one-dimensional electron
systems: (1) If we introduce a third length scale 8
other than the lattice constant and Q ', through an
external or internal incommensurate periodic potential
whose wave number is 8 and strength is v, then the stable
DW is best described in terms of multiple OP's: OP's of
the type h~eepk(CkCk+2k, +~s& (N an integer) simul-
taneously exist to gain the condensation energy. The
number of OP's depends on commensurability. In the in-
commensurate limit it is infinite. This many-OP (MOP)
state is more stable than the usual 2kF Peierls state. The
realized DW is characterized by a set of OP's, 4&]. Un-
der a certain condition, the primary OP, whose amplitude
is largest among them, may even differ from ho with Q
=2kF. (2) There exist an abundant or practically infi-
nite number of MOP states as mean-field solutions, each
of which satisfies a local minimum condition under a
given set of the parameters of the problem. Their OP se-
quence and magnitudes diAer subtly from each other.
Some of these states have energies very close to the abso-
lute minimum. (3) The configuration space of the free
energy minima is best expressed as having ultrametric to-
pology, reminiscent of those in the so-called complex sys-
tems such as spin glasses [2].

We start with the following "generic" mean-field Ham-
iltonian which describes a one-dimensional system with a

tendency toward DW formation under an external peri-
odic potential [3]: /f =No+ &'~, Po= —gkcosk Ct, Ck—vga (Ck Ct, +s+ H.c.), "i%

1 Xrhr+kktv Ck+2kr+tvbCt„
with the self-consistent equations 6& = —UZk(Ct,
XCky2k, +jvs), where U is the electron-Phonon couPling
constant for the CDW and the energy unit is normalized
by half the bandwidth. We allow the OP's
(N=O, ~1, + 2, . . . ).

Let us begin with the simplest example: We consider
the quarter-filling case where 2kF =tt/2 and the wave
number of the potential 8 =tt/4 (the lattice constant
a =1). As shown in Fig. 1, the OP's to be taken into ac-
count are 6, —~, Ap, 61, and h, 2 in this case because the
wave numbers k+N8' (N =0-7) in the first Brillouin
zone are coupled to each other through the above Hamil-
tonian. The matrix elements connecting to these wave
numbers give rise to the OP's which have a chance to
grow. Simple diagonalization of the 8&8 Hamiltonian
matrix readily yields a self-consistent solution with all 6&
nonvanishing For .example, when v =0.02 (v =0.04),

0029 ( 0055), ~o=0 035 (0037) ~i =0.006
(0.014), and A2= —0.004 (0.001) for U=1.0. The band
splits into 8 bands. We must emphasize that the usual
Peierls state with ho (Q=2kF) and A2 (Q =4k~) never
satisf'tes the self-consistent equation in the present vAO
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FIG. 1. Relevant wave numbers and associated matrix ele-
ments for all possible OP's in the first Brillouin zone for 6 =n/4
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situation. Many OP s are inevitable. In order to fulfill it
we are bound to take other OP's into account. This is al-
ways true irrespective of the filling, 6', v, and U. The
above example clearly illustrates that the inevitable
infinite chain of coupling among k points occurs when
6' is incommensurate with the lattice constant. This ul-
timately leads to the MOP state. The above also shows
that the largest OP could be other than hp, in contrast
with what is expected by the Peierls theorem, that the
filling uniquely determines the nesting vector Q =2kF.

There is a MOP state which continuously grows from
the usual Peierls state as ~v~ increases from zero. In this
MOP state, we can estimate h~&p perturbationally: The
Nth OP contributes to opening up the gap at the Fermi
level in the 1Vth-order process in ~v~. By this estimate, we
see that ~Aiv/ho~ =catv and the proportionality con-
stant c~ becomes large as 6 becomes smaller because v is
scaled by 6 in the present situation. This result implies
that as ~v~ increases or 8 decreases, the largest OP will

shift successively from hp to 5+ &, 6+ 2, h, -+3, and so on.
We have found such a MOP state numerically and
confirmed the above statements [4].

However, if we approach the incommensurate situation
in the above numerical calculation, namely, if p becomes
large where 8=2zr/p (the integers p and r are mutually
prime, p is called the commensurability index), the prob-
lem becomes nontrivial and further new aspects emerge.
When p =40 and r =1, for example, the number of possi-
ble independent OP's is 20, and we must solve the 40&40
Hamiltonian matrix self-consistently. To find a local
minimum solution we employ a numerical iteration
method starting with an initial set of the OP s. Although
there exists a solution corresponding to the above pertur-
bation theory, we have found an abundant number of
solutions with comparable energies. One example of our
calculations is shown in Fig. 2. Note that as ~U~ de-
creases the perturbational solution (a) smoothly reduces
to the usual 2kF Peierls state while the solution (b) does
not and persists down to v =0. Each solution in which
many OP's coexist is characterized by a sequence of the
twenty OP's, jhjv}.

The solutions obtained are conveniently classified into a
hierarchical tree-like structure in which not only the pri-
mary OP's diAer from each other, which forms the
first "generation, " but the second or third generation
OP's diA'er as shown in Fig. 3. Namely, two states
[Ai A2 A3 . . . } and [Ai, hz, A4, . . . } differ only from the
third OP and branch at the "second generation, " leading
to an infinitely iterating tree structure. In principle, there
can exist p! diAerent states although in practice the com-
puter algorithms of the simple iteration method employed
prevent obtaining all possible solutions. (According to
our experience larger U or ~v~ make many local minima
easier to be found. ) It is an extremely difficult task to
find the absolute minimum solution among such an abun-
dance of metastable ones because their energies are al-
most degenerate.

Physically, we can express this complexity of our prob-
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FIG. 2. Example of the mean-field solutions as a function of
v (p =40 and quarter-filling case). (a) The perturbational solu-
tion where various OP's change over smoothly. The largest OP
interchanges successively (U=1.0). (b) A nonperturbational
solution where each OP does not change and persists down to
v =0 (U =2.0).

FIG. 3. Schematic structure of mean-field-solution space
where the solutions are classified according to the ordering of
many OP's. The end points on the right-hand side correspond
to particular solutions. Branching of various solutions is
characterized by the sequence of many OP's, 4jv}, yielding a
hierarchical subphase structure in real materials.
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lem as follows: In order to maximally gain the DW con-
densation energy, each OP which has a chance to grow
tries to open up the maximal energy gap right at the Fer-
mi level directly or indirectly. However, some of the
OP's are mutually depressing and some are enhancing
collectively. This hidden frustration originates from the
incommensurability of the potential where every site is
subjected to different potential values and there is no
identical site throughout the system. This situation is
quite similar to a situation in spin glasses or other com-
binatorial optimization problems [2]. In fact, the result-
ing DW pattern in real space looks quite "glass" like.
It is evident from the hierarchical tree structure that
our configuration space is ultrametric [2]. The distance
d(a, P) between two solutions a and P defined to be pro-
portional to the "generation" of their closest common
ancestor satisfies the ultrametric inequality: d(a, P)
~ Max[d(a, y), d(P, y)].

To further qualify our assertion on this point let us
consider statistics of the configuration space of our solu-
tions. We first define a distance or overlap between two
solutions a and P as q'~=[Pf'=&(5 —AP) ]'~, where p
is the commensurability index introduced earlier. By
taking a triplet (a,P, y) among the obtained solutions
the distances are normalized as q; —=3q;/(q&+q2+q3)
(i =1,2, 3, ), where q; =q'~, q~', or q '. Then, we check
the ultrametricity of our configuration space. As shown
in Fig. 4 the statistics satisfy well the ultrametric inequal-
ity, implying that the free energy landscape is ragged and
the ordered DW phase is marginally stable [2]. This
feature of our problem leads to specific experimental
consequences: In particular, the dynamics toward equi-
librium differ drastically from the ordinary ordered
phases such as the conventional Peierls state, which are
characterized by slow relaxational dynamics described by
the stretched exponential type or the power-law type, de-
pending on the detailed structure of our ultrametric
space. We also expect characteristic hysteresis phenome-
na, which have already been emerging experimentally as
explained below. A slight change of the parameter of the
problem by magnetic field or by pressure leads to a dras-
tic change of the stable DW state, therefore resulting in

the fine subphase structure in the phase diagram.
Let us consider several applications of our assertions to

real low-dimensional materials. The best example is the
so-called field-induced SDW (FISDW) phenomena ob-
served in Bechgaard salts, (TMTSF)2X (X=C104,PF6)
[5], a problem of SDW formation in a strongly anisotrop-
ic two-dimensional electron system under a perpendicular
field. It is known [6] that such a system can be cast into
a one-dimensional form and described by starting with
the Harper equation which is nothing but &0. In this
case 6=(2x/a)p/pp=(2x/a)eabH/2zc, where p is the
Aux per unit plaquette, b the transverse lattice constant,
pp the IIux quantum, and v the transverse hopping in-
tegral [6]. [Note in passing that v is scaled by vFr$(H).
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FIG. 4. Histogram of the distribution of the distances for 27
solutions for v =0.35, p =60, U=3.0, and next neighbor hop-
ping 0.2 for SDW (total triplets are 2925), where q;„q
and q „are three distances for a triplet. The ultrametric in-
equality is satisfied when the distribution is along the q;, axis,
while the triangle represents the usual triangular inequality.

This point is important when applying our theory to the
experiments. ] Thus, interestingly enough, we can control
continuously the incommensurability through magnetic
field (8—the order of 10 for H —30 T). Experiments
[7] reveal a recursive H vs T phase diagram: Finer and
finer subphases emerge as T decreases. This is quite un-
derstandable if we look at the hierarchical tree shown in

Fig. 3. The decreasing T sweep corresponds to moving on
this tree from left to right [2]. Therefore we can under-
stand the unexplained facts that the FISDW phenomena
are cooling dependent and that marked hysteresis is
found. Upon decreasing T the cooling rate determines
decisively the "branching" in the hierarchical tree and
therefore the realized low temperature phase would differ
widely depending upon the cooling history. This explains
the different results of quantized Hall conductance mea-
surements, which include abrupt sign changes of the Hall
voltage [5]. As for the finer subphases or recursive phase
diagram, it is quite expected now because as H varies, or
the incommensurability b(H) continuously changes,
different ground states are realized for every H. None of
them coincide. The H vs T phase diagram is divided into
infinitely many subphases, resulting in a recursive one if
the cooling rate is infinitely slow [8]. A physical reason
that the finer structure is observed in spite of "weak" field
or extremely large incommensurability lies in the fact
that the effective unit cell of the FISDW is enlarged be-
cause of the incommensurate Q vector.

It is known [9] that by starting from the strong field
limit and taking the lattice potential as a small perturba-
tion, the same Harper equation is recovered as in the
weak field. Thus our assertions are applicable to this case
by appropriately reinterpreting the parameters (e.g., 8
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rxH '). This enables us to discuss systems in the quan-
tum limit in contrast with the first example of a tight-
binding Hamiltonian where H is weak compared to the
lattice potential. Graphite, which is semimetallic, is
known to exhibit a CDW transition under perpendicular
fields [101 around H =30-40 T, at which point the quasi
quantum limit is achieved at low temperatures. This
quasi-two-dimensional material is a good candidate to
test our assertions, in particular, to investigate the possi-
bility of the recursive phase diagram associated with the
MOP state of the CDW phase. It seems that some exper-
iments [10] are revealing a complex phase diagram.

One of the important aspects of our assertions is that
the 2kF DW system is always unstable against the MOP
state when H is applied, where the primary OP may
differ from Ao with Q =2kF and, moreover, many subsidi-

ary OP's are spontaneously induced, resulting in a novel

DW state. In this connection we point out that the high
field phase in another low-dimensional charge transfer or-
ganic conductor, (BEDT-TTF)zKHg(SCN)4 [11], in

which the 2kF SDW appears at T=10 K under no ap-
plied field, might be changed over to a MOP state. By ap-
plying a magnetic field we can drive the 2kF SDW to a
MOP state.

The recent advances of material design on artificial
two-dimensional systems have great promise not only to
check our assertions, but also to find a new phenomenon
associated with the frustration due to competing length
scales. In fact, a novel magnetoresistance oscillation in a
periodically modulated two-dimensional system in an
A]GaAs/GaAs heterojunction is emerging [12].

The MOP state itself has been already pointed out to
exist by Machida and co-workers [13] and independently

by Lebed' [14] within a specialized model suitable for the
FISDW in quasi-two-dimensional organic conductors.
Our newly gained viewpoints here are summarized as fol-
lows: (a) In order to demonstrate the generality of the
concept of the MOP state, we have succeeded in reducing
the previous specific model to a "minimal and generic'
model system to produce the MOP state both for CDW
and SDW. This allows us to discuss the applicability of
the MOP state to various research fields other than the
FISDW in a broader perspective. In other words, we
have revealed what conditions are needed for the MOP
state to occur. (b) We have shown explicitly for the first
time the "complexity" of our problem associated with the
MOP state. We have emphasized that this aspect is the

essence of the problem. This recognition might be impor-
tant to perform and interpret experiments in these fields
and shed light on the linkage of the present problem to
seemingly remote research fields such as spin glasses,
which enables us to gain a new perspective on our prob-
lem.

In conclusion, we have pointed out a novel aspect of the
CDW and SDW formations under an incommensurate
potential. Application of a magnetic field to low-
dimensional conductors is an ideal means to test our pro-
posals.

The authors thank K. Nokura for useful information
on the spin glass problem.
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