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Universal Correlation in the Spectra of Disordered Systems
with an Aharonov-Bohm Flux
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We consider the unfolded spectra of disordered systems with the topology of a ring, in the presence
of an Aharonov-Bohm flux. We study the Aux dependence of a single energy level. We find that the
correlator of the derivatives at two different Huxes has a universal functional form, and propose that
the result is valid for all systems with Wigner-Dyson statistics.

PACS numbers: 05.45.+b, 71.25.—s, 73.20.Dx

In recent years, there has been great interest in find-
ing criteria to characterize quantum mechanically sys-
tems that are classically chaotic [1]. An interesting result
that has emerged concerns the statistics of the energy lev-
els of those systems. In the absence of symmetries the
level distribution typically resembles that of the eigenval-
ues of random matrices chosen from Gaussian ensembles
[2]. More specifically, the normalized distance between
levels, s = (E1v+i —E1v)/6 (6 is the mean level spac-
ing at E1v), follows approximately the distribution law

P(s) s~exp[ —ns ], where a = vr/4, 4/vr and P = 1, 2

depending on whether or not the Hamiltonian is T in-
variant [1, 3], and provided s is smaller than a system-
dependent constant s, ) 1.

In this Letter we study the spectra of individual quan-
tum particles diffusing in a multidimensional random
static potential (disorder). Energy is the only conserved
quantity in these systems, therefore they are a subclass
of all chaotic systems. We shall propose later that the re-
sults we derive for this particular class may remain valid
for all systems that follow the Wigner-Dyson statistics
P(s).

We consider systems with the topology of a ring,
threaded by a constant magnetic flux P through the open-
ing [4]. P affects the quantum spectrum while leaving the
classical motion undisturbed. In contrast to P(s) which
concerns the level statistics for a fixed P, we study the P
dependence of single energy levels.

The ¹hlevel E1v(p) satisfies E1v (p) = E1v(p+ 1) (p
is measured in units of hc/e). It fluctuates with P (see
inset in Fig. 1) with a typical flux-independent amplitude
A. It is natural to characterize these fluctuations by the
correlation

Z/2

1/2

where ( ) denotes the average over different disorder
configurations and over N. Note that C(P ) = C(—P );
therefore it is sufficient to study C(P ) for 0 & P & 1/2.

C(p ) involves the flux derivative dE1v/dp evaluated

at two points separated by P . When P = 0, C(P )
is positive and its square root measures the typical slope
of E1v(p). As p increases, the slopes at 9i and p+ p
eventually become of opposite sign. Let us denote by P,
the value where C(P ) changes sign [i.e. , C(P, ) = 0]. P,
is a typical distance between slope reversals, and so a
characteristic flux for the fluctuations of E1v (p).

In general, the mean properties of a disordered system
depend on two energy scales, 6 and the Thouless energy
E, = hD/I (here D is the diffusion constant at energy
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FIG. 1. Top: C(P ) for disordered cylindrical surfaces of

size L x L„=27 x 28. The random potential has W = 1.5
(dashed curve), W = 1.7 (solid curve), and W = 1.9 (dotted
curve). Bottom: Comparison with theoretical curve Eq. (9)
(thick solid curve) valid for P» P, . Also shown is C(P )
for a single sample with W = 1.9 (diamonds). Inset: Energy
levels illustrating typical behavior of E~(P).
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Using Eq. (3) and neglecting correlations between ofF-

diagonal terms we express C(P ) in terms of the impurity
averaged density-density correlator, K(P, e, P', e')

(bn(p, e)6'n(p', e')), as C(p ) =
2 Jdp j~ dede'82K/

8$8$' [8]. Our evaluation of this formula follows Ref.
[9]. One assumes weak disorder, E~ rvr, i )) h (r, i

is the mean free time), and small energy differences,
hw = e' —e « h/r, i. The most important contributions
to K result from the summation of the usual diffuson and
Cooperon diagrams. One obtains K = K + K+,

K~(P~, e, e') =
2 Re ) (Dg —i~)

q

EN and L characterizes the ring dimension around the
flux). For example, its conductance measured in units
of e /h is g = E, /6 [5]. P, depends on g, and the
functional form P, (g) can be found from the behavior of
the levels at small P. Because of T syrnrnetry all levels
reverse their slope at P = 0. To estimate the flux at the
next slope reversal, recall that the typical curvature of
the levels at P = 0 is of order E, [5]. Then 6 E, P
yields the result P, gA/E, 1/~g.

We study diagramatically the behavior of C(P ) for
)) P, (i.e. , after several slope reversals). We find a

characteristic monotonic loss of correlation with increas-
ing P, later shown (numerically) to be valid soon after
the first reversal. In principle one can also study the cor-

relation of the energy derivatives for P P, using the
supersymmetry technique of Efetov [6]. In this regime
C(P ) must depend on g since P, does. In contrast, we
shall prove that when P, (( P &( 1/2, C(P ) is given
by

C(4-) = ——, (2)

Remarkably, the right-hand side of Eq. (2) is indepen-
dent of any property of the system. This means that,
provided P, &( 1/2 (i.e. , g )) 1), all disordered systems
in the difFusive regime satisfy Eq. (2) in some flux inter-
val. Then, as P(s), Eq. (2) offers a universa/ quantum
mechanical characterization of these systems.

To derive Eq. (2), consider two energy levels N, M
with N )) M )) 1. Denoting by n(P, e) the den-
sity of states at flux P and energy e, by definition
N —M = Jz (&ln(p, e)dh = const. for all p. Upon

differentiation we obtain (dEr, /dP)n(P, Er, ) ~r =~
—Jz (8n/8$)de. Consider now an ensemble of dif-~~(o)

fusive systems with different impurity configurations.
Let E~rv and n(e) denote the averages of E~~ and
n(P, e) over both the disorder ensemble and the flux

C [
—1/2, 1/2]. Writing E~ rv = E~ rv + bE~ rv

and n = n + bn, and recalling that in the average
bE~ rv (( E~ rv and 6n (( n [7] we arrive at

where Dq+ are the eigenvalues of diffusion equations
involving the flux sum and difference P~
They correspond to eigenfunctions with vanishing nor-
mal derivatives at the boundaries of the system [9]. [For
a cylindrical surface of dimension L x L„with peri-
odic boundary conditions in the x direction we have

q~ = ((n + P~)2vr/L, n„7r/L&), n = 0, +1,+2, . . .
and n„= 0, 1, 2, . . . .] The sum in Eq. (4) converges in
less than four dimensions. The formalism used to de-
rive Eq. (4) neglects the detailed level structure at scales
finer than E, so Eq. (4) is valid only when hDq+~ )) 6 for
all q~. This results in the condition P~ )) gA/E,
1/~g

Quite generally, K+ does not contribute to C(P ). In-
deed, from 8 K/8P 8$' = 8 K+/8P+ —8 K /8$, and
the periodicity of K+ with P+, one finds that the flux
average of 8 K/8$8$' equals —8 K /8$; therefore

1
C(0-) = ——

2

Ew g2~
de de'

2 (P, e, e')
@M

To obtain Eq. (2) we consider small P 's. At P = 0
the constant solution is always a solution to the boundary
value problem with eigenvalue zero, regardless of the sys-
tem's geometry. Moreover, it is the ground-state eigen-
function, therefore, it is nondegenerate. (In cylindrical
systems it corresponds to n = n.„=0.) T symmetry
forbids the eigenvalue to change linearly with P . Hence,
at small P Eq. (6) is dominated by a term of the form

(7)

where a is a constant. Upon differentiation the system-
dependent constants disappear, and the universal form
Eq. (2) results. We conclude that Eq. (2) is valid for any
diffusive system with P, « 1/2 regardless of its particular
characteristics, even its shape.

For the specific case of' a system defined on a cylindrical
surface of dimension L x L„, it is easy to find all the
eigenvalues of the diffusion equation. In this case, Eq. (6)
can be evaluated explicitly to obtain a formula that is
valid also when P = 1/2. Rearranging terms and using
Eiv —E~ )) hDq in Eq. (6) one finds

The flux derivative of K yields a rapidly convergent
series [see Eq. (4)] where only the first few terms are)important. Those terms become small when h~ E, .
Since E, « tr/r, i « E~~, the main contribution to
the integral in Eq. (5) comes from cu (& 1/r, ~, therefore
Eq. (4) can be used. After the energy integrations we
find

82
C(p ) = — ) 2 1n(l+ [(Erv —Eider)/hDq2]2)

q

(6)
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1 ) ) (n + P )2 —(nyL /2Ly)z

[( *+&-)'+ (,L*/2L, )']' (8)

Carrying out the summation over n in Eq. (8) by using contour integration finally yields

1 1 —cosh(n„+L /L„) cos2vrg+
1 —cos 2vrg [cosh(n„7rL /L&) —cos 27rg ]2

Equation (9) is universal as it does not depend on F,
or A. Contrary to Eq. (2), however, it depends on the
system's geometry (through L /L„). Of course, in the
limit P « 1/2 Eq. (9) reduces to Eq. (2).

Having derived our main formula Eq. (2) and its gen-
eralization to cylindrical surfaces Eq. (9), we proceed
to test the results numerically. We use a tight binding
model with homogeneous on site disorder in the range

[
—W/2, W/2] (the hopping matrix elements have abso-

lute value 1). The calculation involves diagonalizing the
Hamiltonian for each given sample at each given flux. To
satisfy P, « P « 1/2 over a reasonably large interval of
fluxes P requires very large g values and hence very large
sample sizes. We therefore test Eq. (9) which is valid for

& 1/2. Of course, once the applicability of
Eq. (9) is established, the assumptions and approxima-
tions used in its analytical derivation are justified and
the validity of the more restrictive Eq. (2) follows.

Figure 1 shows C(P ) for samples with three different

g values. In each case we neglect the "low-g states" at
the top and bottom of the band and consider 600 eigen-
values at its center. The ensemble averages are over ten
samples. Because of the rapid convergence of the series
in Eq. (9) only a few of the lowest modes contribute to
C(P ); hence the formula derived in the continuum can
be used to fit the results in the lattice. The numerical
results confirm the universality of C(P ) for P )) P,
and are in good agreement with Eq. (9).

The diamonds in Fig. 1 correspond to a single sample
with W = 1.9. Although ensemble averaging gives bet-
ter statistics and so enhances the agreement with theory,
clearly it is not essential. This is consistent with the
ergodic hypothesis [10] according to which disorder and
spectral averages are equivalent. When g )) 1 the func-
tion E~(P) is expected to have many fluctuations in the
interval —1/2 & P & 1/2, making the flux averaging in

C(P ) very effective. In that case, it is possible that
Eq. (2) will be valid for each single level without any
further averaging.

Equation (2) was derived for disordered systems. Since
it does not contain the mean free path t, it is reasonable
to ask whether it remains valid when l reaches the sys-
tem size. In this case boundary scattering, rather than
bulk disorder, is the relevant scattering mechanism. If
the boundary has no symmetries, the classical system is
expected to be chaotic and, since energy is the only con-
served quantum number, the spectrum will show level
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FIG. 2. Top: Typical C(P ) for chaotic billiards. Dotted
and solid curves correspond to systems (b) and (c) in Fig.
3, respectively. Diamonds are C(P ) for the single sample
with W = 1.9 shown in Fig. 1. Bottom: Comparison with
theoretical curve Eq. (2) (thick dashed curve) valid for P, «

« 1/2. Inset: Comparison of Eq. (2) (dashed curve) to
C(g ) for a nonchaotic cylindrical surface [Fig. 3(a)]. The
disagreement is evident.

i
repulsion as in the case of disordered systems. If the
boundary has symmetries, the classical problem will be
partially integrable and the quantum spectrum will have
level crossings. Is C(P ) sensitive to the different behav-
iors in those quantum billiards' We test the applicability
of Eq. (2) by studying the spectra of systems of various
shapes. The average in Eq. (1) is calculated over each
spectrum.

As a nonchaotic billiard we consider a cylindrical sur-
face of dimension I x L„=27 x 28 and calculate ana-
lytically the flux dependence of its first 2500 levels. The
inset in Fig. 2 compares C(P ) to the theoretical Eq. (2).
The disagreement is evident.
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FIG. 3. Some of the billiards considered. The cylindrical
surfaces are shown open along the zigzag lines. These lines
should be identified. Part (a) is a usual cylinder (nonchaotic).
In (b) and (c) bottom edge is negative cosine wave while top
edges are convex. half circle and concave sine wave, respec-
tively. The dimensions in lattice units for (b) and (c) are
L=14and L=18.

As chaotic billiards we consider several cylindrical sur-
faces whose upper and lower edges have been modified
into simple geometrical curves of different symmetry (see
Fig. 3). The spectra are obtained using a tight bind-
ing model. To minimize the e8'ects of the lattice, we
consider only 250 eigenvalues ( 20% of the total) at the
bottom of the band, where the wavelengths are typically
larger than the lattice unit. We then neglect the first
50 eigenvalues which have "low g." Figure 2 compares
typical results for C(P ) to Eq. (2). We find reasonable
agreement in the regime of validity of Eq. (2). At larger
values of P geometry-dependent corrections to Eq. (2)
become important and C(P ) becomes system specific.
We find systematically that chaotic billiards are close to
the theoretical curve while the nonchaotic billiard is not.

In conclusion, the expression of C(P ) derived for dis-
ordered systems seems to apply to chaotic billiards as
well. This leads us to speculate that Eq. (2) may re-
main valid for any system whose spectrum at P = 0 has
Wigner-Dyson statistics.
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