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Recognizing Determinism in a Time Series
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A quantitative measure of determinism in a recurrent time series is developed. Specifically, scalar
time series data are used to form a vector series in reconstructed phase space. A statistic is then
developed to measure the observed "continuity" of the vector series. The statistic is used as a measure of
determinism. Several examples are included to demonstrate the effectiveness of the method.

PACS numbers: 05.45.+b, 05.40.+j

One is often interested in explaining the variability ob-
served in complex time series. Is the variability due to
external stochastic forces, internal deterministic dynam-
ics, or to a combination of the two? Answering this ques-
tion can profoundly aAect subsequent model develop-
ment. Recently, several authors (Sugihara and May [I],
and Kaplan and Glass [2]) have developed techniques for
measuring the extent to which deterministic dynamics
can explain the variability. The Sugihara-May method is
based on how well the past can predict the future. The
Kaplan-Glass method is based on the parallelness of a
certain vector field formed from the data. Here we pro-
pose an eAective and computationally simple variant on
the Kaplan-Glass method, which may be implemented us-
ing relatively small sets of data, and which performs well
in high levels of uncorrelated noise. Oor method uses the
"phase space continuity" observed in the time series to
measure determinism. Several examples are presented to
illustrate the method.

For our purposes, we use the following operational
definition of a deterministic time series: A time series
s( 1 ),s(2), . . . , s(N) is deterministic, if the sequence of
vectors

(2)

k

trans
/ + I JZ

I I
v' (v) I I

where IIvII denotes the Euclidean length of the vector v.

The translation error measures the fractional spread in

the displacements experienced by xo, . . . , xk relative to
the average displacement (v). Note that division by the
length of (v) makes the translation error insensitive to an
overall scaling of the original time series. If the time
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to be nearly equal, provided that xo and its k nearest
neighbors are contained in a sufficiently small region of
E-dimensional space.

To quantify this notion, let

k
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denote the average of the translation vectors vj and com-
pute the translation error

x(j) =(s(j ),s(j+L), . . . , s(j + (E —1)L)),
j =1, . . . , N —(E —1)L

can be "accurately" modeled as the iteration of some con-
tinuous function f, for an appropriate choice of the
embedding dimension E and the time lag L. We refer to
this collection of vectors as the "experimental attractor. "
Since we are working with a finite sequence of vectors, we
cannot implement a "standard" calculus test for continui-
ty. Consequently, we develop an empirical test for con-
tinuity, applicable to our situation, which is based on the
fact that for a continuous map f, points close together
will map to points close together.

Let xo be a fixed, but otherwise arbitrary, vector on the
experimental attractor, and let x], . . . , xk denote the k
nearest neighbors of xo. Let yo, . . . ,yk represent the im-
ages of these points. (For continuous-time systems, the
sampling rate and lag must be chosen to insure that the
points xo, . . . , xt, are not temporally correlated. ) If the
data are deterministic, we expect the translation vectors

A

65
o
E
V

0.1

0.01

white Gaussiafl noise

0.001

0.00O1
1 2 3 4

I I i I I i s i I « I I I I I I I I r

5 6 7 8 9

FIG. 1. Plot of the median translation error vs embedding di-
mension for the Henon map and for white Gaussian noise.
I =2, k =4, and 1V„„=100. In each case, thirty 1024-point
realizations of the signals were used and an average of the re-
sults was computed. The error bars represent the mean + 1

standard deviation.
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FIG. 2. Plot of the median translation error vs signal-to-

noise ratio for Henon data contaminated by adding white
Gaussian noise. E=5, L=2, k=4, and A'„.=100. At each
signal-to-noise ratio, thirty 1024-point realizations of Henon
and noise were used to calculate the mean and standard devia-
tion of the median translation error.
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FIG. 3. Plot of the median translation error vs embedding di-
mension for the Lorenz data and a Gaussian stochastic process
having the same average power spectrum as the Lorenz data.
I =4, k=4, and A'„„=200. In each case, thirty 2048-point
realizations of the signals were used and an average of the re-
sults was computed. The error bars represent the mean ~ 1

standard deviation.

series is deterministic, then the v~ will be nearly equal,
and the translation error will be small.

We extend this local calculation of continuity to a glo-
bal measure as follows. Choose N„, random centers from
the experimental attractor —this is equivalent to sampling
the natural density of the experimental attractor. For
each of the centers compute the translation error. The
median of these values provides a robust measure of the
determinism in the attractor. We now discuss applica-
tions of this technique.

We begin with a simple example. In Fig. 1, we com-
pare the translation error for Henon data [3] to that of a
white Gaussian process. Note that spectrally the Henon
map is a white process. For this example, we have chosen
k=4, L=2, N=1024, and N„„=100. Thirty realiza-
tions of each signal were used to compute an average
median translation error. The error bars represent the
mean + 1 standard deviation. Note that the Henon error
exhibits an exponential increase with embedding dimen-
sion, while the error for white Gaussian noise is roughly
constant.

In Fig. 2, we illustrate the effect of additive noise on
the translation error. One 1024-point sample of a Henon
time series was mixed with various levels of white Gauss-
ian noise. We measure the level of noise with the
signal to noise ratio Rs-Na-, where RsNR =101og (signal
variance/noise variance). Thirty realizations of Henon
and noise were used.

As a second example, we consider the Lorenz equations
[4]. (Parameters are r =28, b =8/3, and a =10.) A
Runge-Kutta method of order 4 with a step size of
0.00314 was used to obtain an approximate solution of
the system. The x component was then decimated by 10,

resulting in approximately 20 samples per typical oscilla-
tion about one of the unstable spiral points. Here, we
compare the translation error for Lorenz x(t) data to
that of a surrogate stochastic process [5]. The surrogate
data were created by averaging the magnitude spectrum
of 2048-point samples of Lorenz x(t) data. A random
phase was assigned to each value of the average magni-
tude spectrum, and then an inverse discrete Fourier trans-
form was used to create surrogate time series. In this
way, we obtain samples of a Gaussian process having the
same average power spectrum as the Lorenz data. Figure
3 compares the behavior of the median translation errors
f'or the Lorenz and Lorenz surrogate time series. For this
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FIG. 4. Sample time series of sea noise data.
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FIG. 5. Plot of median translation error vs embedding di-
mension for sea noise and a Gaussian stochastic process having
the same average power spectrum as the sea noise. L =3, k =4,
and N„, =200. In each case, thirty 2048-point realizations of
the signals were used and an average of the results was comput-
ed. The error bars represent the mean ~ 1 standard deviation.

pling rate of 820 Hz. Figure 4 shows a time series from
the resulting data. As in our second example, we first
construct a surrogate data set having the same average
power spectrum as the sea noise. In Fig. 5, we compare
the behavior of the median translation errors for the sea
noise and the surrogate data. For this example, we have
chosen k =4, I =3, N =2048, and N„„=200. Thirty
realizations of each signal were used to compute an aver-

age median translation error. We remark that a similar
calculation with k =4, I =3, N =6144, and N „,=600
produced nearly identical results. Thus, according to our
measure of determinism, the sea noise behaves like a
Gaussian stochastic process.

In conclusion, we have developed a quantitative mea-
sure of the amount of determinism in a time series. The
method is intuitively simple, computationally ef5cient,
and gracefully degrades in noise. We have presented
several examples of how the technique can be applied.
We end by noting that while our method does not provide
an absolute test for determinism in a time series (if such
a test existed), it does provide a quantitative measure of
the appropriateness of deterministic models for a complex
time series.

example, we have chosen k =4, I.=4, N =2048, and
N„„=200. Thirty realizations of each signal were used
to compute an average median translation error. Note
that based on the behavior of the translation error, the
two processes are clearly distinguishable.

As our final example, we apply our technique to a sam-
ple of ambient sea noise. The data were taken in a fre-
quency band from 550 to 750 Hz where one expects the
dominant noise source to be surface winds. The original
full-band signal was translated down in frequency, low
pass filtered, and then decimated to achieve a final sam-
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