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Stochastic resonance is a phenomenon seen in multistable systems where the addition of noise to the
system can amplify small periodic signals. We show in an experiment with a circuit that many of the
concepts used to describe crises may also be used to describe stochastic resonance. We speculate that
stochastic resonance may be an example of a crisis. This would allow the use of dynamical concepts to
describe a process that is usually considered statistically.

PACS numbers: 05.45.+b, 05.20.—y

In a typical stochastic resonance situation, a sum of a
noise signal and a weak periodic signal is used to drive a
bistable system [1,2]. By itself, the noise would cause the
bistable system to make transitions randomly between the
two states. If the amplitude of the noise signal is near the
minimum amplitude required for the system to make
transitions, then the probability of making a transition in-
creases nonlinearly as the periodic signal strength in-
creases. If one then filters the resulting signal with a
"two-state" filter that only describes which state the sys-
tem is in, the periodic component of the signal is greatly
amplified.

This phenomenon has been shown to be ubiquitous in

two-state systems, both in theory and in experiment [1].
The theory describing stochastic resonance is statistical;
the noise is usually assumed to be white noise, and the
probability of transition is derived from the laws of sta-
tistical mechanics [2,3]. The resulting probability de-
pends exponentially on the noise strength.

We wish to view stochastic resonance from a dynami-
cal systems viewpoint. It has been shown that stochastic
resonance still occurs when chaos, rather than noise, is
used as the nonperiodic component of the driving signal
[4]. Chaos is a deterministic dynamical signal. When
chaos is used in place of noise for stochastic resonance ex-
periments, the result is not predictable, but it is not ran-
dom; the entire system is deterministic. This means that
the "stochastic" resonance may be described using dy-
namical, rather than statistical concepts.

We show in an experiment that stochastic resonance
may be described in the same way as a crisis. A crisis is

a situation in which an attractor collides with the stable
manifold of an unstable fixed point [5,6]. This stable
manifold is the boundary between two different basins of
attraction, so that two separate attractors become one.
This description allows one to consider stochastic reso-
nance as a particular case of a much larger group of
dynamical phenomena. There is other work describing
stochastic resonance near a crisis, but the process itself is

still considered statistically in that work [7]. There is

also work by Arrechi and co-workers [8,9] describing
power spectra generated by noise-induced hopping be-
tween different attractors in multistable systems. Our

work is similar in many ways to work on noise-induced
crises [10] and work on quasiperiodically driven nonlinear
systems [11],where some signal added to the driving sig-
nal induces a crisis.

Period doubling. —The experiment is based on a
periodically driven circuit simulating the Duffing equa-
tions, described previously [12]. The circuit is driven so
that its response is period doubled, giving it two possible
phases, one shifted by one drive cycle from the other. It
is possible to make the system shift from one phase to the
other by adding noise or chaos to the drive signal. As we
have shown previously, this phase flip occurs when the
perturbed period-doubled circuit finds itself on an unsta-
ble period-one orbit [12]. The period-one orbit persists
for one or more cycles, allowing the phase flip to occur.
Because we are looking at two different phases as our two
states, their symmetry is not affected by inaccuracies in

the construction of the circuit.
A signal from a chaotic circuit or noise from a noise

generator may be added to the periodic signal driving the
Duffing circuit. A second function generator supplies a
sinusoidal modulation signal which is also added to the
drive. The periodic drive signal generator also provides a
sync signa1 that is used to strobe a digitizer in order to
collect a time series consisting of the output of the circuit
at a constant phase of the periodic drive. This time series
is used to determine the phase of the response. After
4096 cycles, the power spectrum of the phase time series
is calculated. This is repeated for twenty time series and
the resulting power spectra are averaged together.

To compare the effect of our deterministic chaos to
that of noise, we used a chaotic signal from a hysteretic
oscillator circuit [13] and white noise from a noise gen-
erator. Figure 1 shows the amplitude distributions of
both signals. The chaos distribution is irregular, while
the noise distribution is approximately Gaussian.

Crises. —The experiment was first done with no modu-
lation signal. The amplitude of the chaos added to the
drive signal was first set to a low value, so that the
period-doubled system did not flip phase. The amplitude
of the chaos was then increased so that flipping did occur,
and the average number of cycles between flips was
recorded. The average cycles per flip versus chaos ampli-
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FIG. l, Amplitude distributions for chaos and noise used to
drive the period-doubled Duffing circuit. The normalized am-

plitude of the signal is D„and p(D„) is the probability of the
signal having that amplitude.
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FIG. 2. Average number of drive cycles between phase Aips

(cf) vs the amplitude 2 of the signal added to the periodic
drive. The scale with cf, is for chaos, while cf„ is for noise. The
dashed lines are fits by the critical power law in the text.

tude is plotted in Fig. 2. This situation resembles crisis-
induced intermittency [6]. The average number of
cycles/flip when white noise is used is also shown in Fig.
2.

Grebogi et al. [6] determined that the scaling of the
number of transitions between diA'erent parts of the at-
tractor after a crisis followed a power law of the form
K/(A —A, )", where 2 is our experiment is the noise or
chaos amplitude, 2, is the amplitude at which the crisis
occurs, and y is the exponent. It has been sho~n in ex-
periments that this law also holds for noise-induced crises
[10]. If we fit a power law of the form K~+Kq/
(A —A, )r to the data in Fig. 2, we find that K~ is —93,
K2 is 1967, 2, is 166 mV, and y is 0.68 for chaos and

K~ = —119, K2=8211, 2, =213 mV, and @=0.83 for
noise. The additive constant K~ is used to a11ow for the
fact that our algorithm for finding phase flips may report
up to twenty spurious flips due to initialization at the be-
ginning of each time series.

Following Grebogi et al. [6] the critical exponent y is

determined by the eigenvalues of the unstable period-one
orbit whose stable manifold forms the boundary between
the basins of attraction of the stable orbits. The exponent
will also depend on whether the crisis is homoclinic or
heteroclinic. Although we cannot prove which type of
crisis exists, we see only the unstable period-one orbit
during the transition, so it seems reasonable to assume a
homoclinic tangency.

We attempt to apply this theory to our experiment be-
cause both the periodic drive signal and the chaos come
from deterministic dynamical systems, so the driven
Dufting circuit is still a deterministic dynamical system.
While it is not the same dynamical system as the periodi-
cally driven Du%ng, we have shown before that if the
added chaos is not too large and the system is stable to
the new driving, the dynamics are not greatly changed, so
the periodically driven system may be used as an approxi-
mation [12]. The factor by which the chaotic signal is
multiplied before being added to the periodic signal is a
parameter of the system. The theory of critical exponents
for crises is not parameter specific; rather it says that

given a dynamical system, the critical exponent depends
only on the orbits involved in the crisis and not on which
parameter is being changed. As long as the dynamical
system fits the approximations in Ref. [6], namely, that
the tangency is approximately quadratic, then one may
calculate the critical exponent for this crisis from the ei-
genvalues of the unstable period-one orbit.

For a crisis caused by a homoclinic tangency in a two-
dimensional system, the value of y is given by [6]

where P~ and P2 are the unstable and stable eigenvalues
of the orbit involved in the crisis.

It was possible to observe the unstable period-one orbit
using recently developed techniques for controlling and

tracking unstable periodic orbits [14,15]. The system was
started at ten slightly diAerent initial conditions near the
unstable period-one orbit when the drive signal was at its
maximum. The three components of the initial conditions
were recorded by a digitizer, as were the three corre-
sponding values 20 ps (about —,', th cycle) later. The
method of Eckmann et al. [16] was then used with the
experimental data to find the eigenvalues for the unstable
orbit. The three eigenvalues were —1.14, 0.65, and
0.0002. The dynamics were approximately two dimen-
sional here, so Eq. (1) may be used. The resulting value
of y was 0.72, close to the values measured from the
power-law fit of 0.68 for chaos and 0.83 for noise. This
fits the claim that the flipping of phases occurs due to a
crisis.

The fact that we see a critical power law as we would

expect for a deterministic crisis even when noise is used is

a consequence of the fact that the noise is driving a deter-
ministic system. The noise distribution itself, as pictured
in Fig. 1, is close to Gaussian, so that we would expect
the number of phase flips to increase exponentially as the
noise amplitude increases. This is not the case because
the Duffing circuit is not being driven adiabatically by the
noise. Rather, the circuit acts as a bandpass filter; noise
frequencies near the center of the pass band will have a
much larger eAect on the circuit than frequencies far
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FIG. 3. Probability p of finding the x output from a period-
doubled DuSng circuit with the normalized amplitude D„. The
output is strobed with the maximum of the periodic driving sig-
nal. %'hite noise or chaos is added to the periodic drive.

from the center. In Fig. 3 is plotted the actual amplitude
distribution of the driven period-doubled DuSng circuit
strobed with the maximum of the sinusoidal drive signal.
It may be seen that the distributions for the chaos and the
noise are almost the same. Least-squares fits confirm
that except for an exponential tail for very small proba-
bilities, the distribution for the noisy Buffin follows al-
most the same power law (with an exponent of approxi-
mately 3) as the chaotic driven Dufling circuit. The half
width at half maximum of the amplitude distribution for
the driven period-doubled circuit also obeys a power law
as the noise or chaos amplitude is increased, with an ex-
ponent of approximately 1.6.

Stochastic resonance. —We added a small periodic sig-
nal (the modulation signal) to the drive. We used a 100
Hz sine wave with an amplitude of 180 mV rms or a 300
Hz sine wave of 72 mV rms. The 100 Hz signal was
larger than the 300 Hz signal because the circuit acts as
a bandpass filter centered near 700 Hz. The driving sig-
nal was about 4.8 V rms.

Figure 4 is a power spectrum of the phase time series
for a driving frequency of 100 Hz when the chaos ampli-
tude was 64 mV rms. The spectrum shows peaks at the
fundamental frequency and the first odd harmonic, both
characteristic of stochastic resonance. Also present are
two odd subharmonics at 25 and 75 Hz, and a peak at
265 Hz. This last peak corresponds to the diA'erence be-
tween half the driving frequency and the modulation fre-
quency. Because we take our data at the drive frequency,
the spectrum only goes up to half the drive frequency.
The background spectrum is not Lorentzian, as is typical
of other stochastic resonances [2], because the adiabatic
approximation does not hold here.

Figure 5 shows the signal-to-noise ratios of the peaks at
100 and 265 Hz as the amplitude of the chaos is in-
creased. The signal-to-noise ratio was found by compar-
ing the amplitude of a peak to the amplitude of the back-
ground power spectrum near the peak. The signal-to-
noise ratio at 100 Hz drops linearly with the noise, indi-
cating no stochastic resonance, while at 265 Hz, the
signal-to-noise ratio increases up to 15 dB (comparable to

other experiments [1]) as the chaos amplitude increases,
indicating stochastic resonance. The reason that we see
stochastic resonance at 265 Hz and not at the fundamen-
tal is because we are using a period-doubled system.

It is reasonable to assume that there is some point in

the period-doubled orbit where the phase Hip is more like-

ly to occur than at any other point. The rate of phase
flips for this process should vary like sin(fd/2), where fd
is the drive frequency. The probability of Gipping is also
larger when the modulation signal is at a maximum, so
this rate should vary like sin(f ), where f is the mod-
ulation frequency. One rate will modulate the other,
so the actual rate is proportional to the product
sin(f )sin(fd/2), and the resulting frequencies that are
amplified are fd/2 f and fd—/2+f . Because the ob-
served spectrum is limited to frequencies below fd/2, only
the lower frequency is seen. We saw similar results when
the modulation was 300 Hz and we saw stochastic reso-
nance when noise was used in place of chaos.

In conclusion, the use of chaos allowed us to examine
stochastic resonance as a dynamical phenomenon. We
found that many of the techniques used to analyze crises
in dynamical systems could be used to study stochastic
resonance. We also applied the theory of McNamara
and Wiesenfeld [2] to our experiments, using a rate law
of the form (A —2, )" which was related to the crisis
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FIG. 5. Signal-to-noise ratio R vs the rms amplitude A of the
added chaos for a stochastic resonance experiment in which a
100 Hz modulation signal was added to the noisy periodic drive
signal.
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FIG. 4. Power spectrum of the phase time series (S is power)
when a chaotic signal and a 100 Hz modulation signal are add-
ed to the driving signal for a period-doubled DuSng circuit.
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power law. The parameters in this rate law were found
from fits to the experiments. This type of rate law did
produce a stochastic resonance eAect. These results will

be published later.
The authors would like to acknowledge useful conver-

sations with Celso Grebogi and Ed Ott.
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