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Quantum Beats and Chaos in the Henon-Heiles Hamiltonian
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The quantum density of states of the Henon-Heiles Hamiltonian exhibits prominent low-frequency
beats as a function of energy. We interpret the beats in terms of interferences of the three simplest
isolated classical periodic orbits by a calculation of their amplitudes in the Gutzwiller trace formula.
We show that periodic orbit theory can reproduce classically the main characteristics of the quan-
tum beats. Both stable and unstable orbits contribute substantially in generating these long-range
correlations, which coexist with the short-range fluctuations giving nearest-neighbor spacings distri-
butions typical for chaos. With a Fourier analysis our conclusions con6rm the quantum spectrum.

PACS numbers: 05.45.+b, 02.50.—r, 03.65.Ge

The quantal behavior of a system exhibiting classical
chaos is of considerable interest [1,2]. For a Hamiltonian
system, it is customary to study the eigenspectrum in
two complementary ways. The local behavior of the spec-
trum is typically analyzed by studying the distribution
of nearest-neighbor spacings (NNS) [3]. In nonintegrable
systems, this unfolds level repulsions which, through ran-
dom matrix theory, are used as a test [4] for "quantum
chaos. " The global behavior of a spectrum is given by the
quantum density of states as a function of energy [5, 6].
Its analysis unravels the long-range correlations in the en-
ergy spectrum, which often appear as oscillations. These
oscillations are, through periodic orbit theory [1], related
to the classical periodic orbits. Even a classically ergodic
system may have isolated periodic orbits that give rise
to strong Fourier amplitudes of the spectral density [7].
Typically, the orbits with the shortest time periods set
the largest energy scales for the oscillations. If, however,
a few of these orbits have close-by frequencies and am-
plitudes, beats may arise with modulated amplitudes on
a much larger energy scale. Such beats were found in an
integrable system by Balian and Bloch [8] in their inves-
tigation of the spectral density of a spherical cavity with
rejecting walls. It is dominated by the interference of tri-
angular and square trajectories. Metal clusters provide
a physical many-body system, in which such beats occur
in the form of "supershells" [9] and have experimentally
been put into evidence [10].

In this paper, we demonstrate for the first time the
existence of beats in a classically chaotic system, namely,
the well-studied Henon-Heiles potential [11]. We asso-
ciate its quantum beats to the three primitive classical
periodic orbits [12] of nearly equal frequencies and am-
plitudes.

The Henon-Heiles Hamiltonian describes the planar
motion of a single particle and is given by

II= -(p*+& )+-(~ +y )+~ * y —-y12 2 12 2 2 1 3
2 3

Here o, is a parameter governing the anharmonicity.
By convention we set h = m = ~ = 1. The quan-
tum spectrum of this Harniltonian has been examined
by many groups [13]. Because of the noncentral na-
ture of the potential, the angular momentum l is not
a good quantum number. We diagonalize the Hamil-
tonian in a large harmonic oscillator basis [n, l) with
radial quantum number n. The anharmonic term in
H mixes states with Ll = +3. Clearly, this mixing
takes place in three disconnected sets of basis states:
(a) l E (.. .—6, —3 0 3 6.. .) (b) l E (.. .—5, —2 1 4.. .),
and (c) l E (... —4, —1, 2, 5.. .). Each set has nondegen-
erate eigenvalues. Under time reversal, set (a) maps onto
itself, while (b) maps onto (c) and vice versa Therefor. e,
sets (b} and (c) have identical eigenspectra due to the
time reversal symmetry of the Hamiltonian (1). Thus, H
may be diagonalized in each basis set separately. For the
global analysis of the spectrum, all three sets of eigenval-
ues are combined, whereas for an NNS distribution, the
spectra of the diferent sets are examined individually.

It should be pointed out that in principle all the
"bound states" for the Hamiltonian (1) have nonzero
widths as the particle may tunnel out through the barri-
ers. Along the three symmetry axes, the barrier height is
minimum (see Fig. 1), and the classical escape (or saddle
point) energy is E* = 1/6a. . The eigenvalues represent
the spectrum accurately if the true widths are small com-
pared to the averaged level spacing. The discretized con-
tinuum approximately simulates the low-lying resonances
[14]. We found that the energy eigenvalues immediately
above F* change only by less than a few percent of the
average level spacing as the basis size is increased from a
cutoK energy of E,„q

——66 to E,„& ——101.
An analysis of NNS distributions of the energy level

set (b) (or (c)) reveals that the system is transitional
between regular and chaotic for o. = 0.06 and chaotic
at n = 0.08. (In order to have enough statistics, we
could only go up to o. = 0.08 in calculating the NNS
distributions. )
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FIG. 1. The Henon-Heiles equipotentials outside the tri-
angle defined by E = E . The three classical periodic orbits
of shortest lengths A ("linear" ), B ("smiley"), and C ("loop" )
are displayed for E = E*.
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The density of states g(E) = Q,. b(E —E,) of a quan-
tum system is well known to have a smooth part (the
"Thomas-Fermi part"), and an oscillating part that gives
rise to shell effects [6, 15, 16]. The smooth part may be
obtained from the semiclassical partition function [17] or
the equivalent Green's function [18]. The oscillating part
may be approximated [1,6] by a sum over all periodic or-
bits of the classical system. In this work, we obtain the
smooth part of the level density by the Strutinsky aver-
aging procedure [16, 19]. This consists in replacing each
delta function b(E —E,) by 'some smoothing function of
half-width p, usually taken to be a Gaussian, with appro-
priate curvature-correction terms. Effectively, a smooth-
ing parameter p equal to or slightly larger than the main-

shell spacing in the spectrum E, (i.e. , hw for a harmonic
oscillator) wipes out all the oscillations in g(E), and only
the average part survives which in simple model poten-
tials is identical to the (extended) Thomas-Fermi level
density [17, 19]. Following Strutinsky [16], we define the
oscillating part of the level density by

4(E) = [g ...(E) —g-(E)]

Hereby we use a finite smoothing parameter p,c to damp
the 6 functions in the exact g(E). We choose the values

[20] p „=0.6 and p = 1.2. Generally, p„, may be used
as a filter for studying the effects of different harmonics in

6g(E). With the present value, the quantity 6g(E) con-
tains only the fundamentals, corresponding to the short-
est periods, and possible beats. All higher harmonics are
suppressed [21]. Note, however, that the overall magni-
tude of 6'g(E) depends on the choice of p „,since it tends
to vanish as p „~p.

The bg(E) obtained from the Henon-Heiles quantum

FIG. 2. Middle row: Oscillating part h'g(E) of the quan-
tum density of states for the Henon-Heiles Hamiltonian. Top
row: Fourier transform of the quantum 6g(E) B'ottom. row:
Result of the classical periodic orbit calculation of 6g(E),
Eq. (4). Left column: o. = 0.06. Right column: n = 0.08.

spectrum is shown in the middle row of Fig. 2 for o. = 0.06
and n = 0.08 and exhibits prominent beats. A discrete
fast Fourier transform (FFT) gives the results shown in
the top row of Fig. 2. For the Fourier analysis at o. = 0.06
the entire energy range 0 & E & 40 was chosen, whereas
for o, = 0.08 the energy cutoff was taken at E = E* = 26,
since beyond the saddle point energy E* the quantum
spectrum appears to be less reliable, judging from its
rather irregular behavior. The abscissas of the Fourier
spectra show the time scale with T=l corresponding to
the period of the unperturbed harmonic oscillator. The
spectrum at 0, = 0.06 reveals one period slightly below
1 and two others slightly above 1. The same pattern is
repeated for 0, = 0.08. In the latter case, the higher peak
is not resolved [22] and from the Fourier spectrum alone it
is not clear if it contains two distinct periods. However, it
does show that the amplitudes of the leading components
are quite comparable. We shall in the following interpret
all these features in a discussion of the periodic orbits of
the classical system.

In Fig. 1, the well-known Henon-Heiles equipotentials
are displayed. Solving the classical equations of motion
numerically, we found for E & E* three distinct classes
of periodic orbits, shown in Fig. 1, which we labeled A
("saddle mode"), B ("smiley" mode), and C ("loop" ).
Orbits A and 8 occur in three orientations according to
the symmetry of the potential. These three orbits are
the ones with the smallest periods, close to the oscillator
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period (T = 1), for low E. Here, the orbits A and C
are stable, while orbit B is always unstable. As E ap-
proaches the threshold E*, the situation becomes more
complicated; A does not exist beyond E* (where its pe-
riod diverges), whereas B and C can be found also well
above E*, although being unstable there [23].

In the Hamiltonian (1), the strength parameter cr

may be scaled away by de6ning new scaled variables

( = nx, rl = aery. Then the classical equations of mo-
tion in the variables (, rl no longer depend explicitly on

The motion is thus "universal" in these coordinates,
with a scaled energy n E. It is sufBcient to solve the
equations of motion once for each value of n E. In terms
of the dimensionless energy variable e = E/E* = 6a; E,
we have parametrized the numerically obtained actions
S of the above three primitive orbits by
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+2&c cos (Sc) . (4)

Here Aq(E) are the amplitudes obtained from the peri-
ods and the relevant eigenvalues of the monodromy ma-
trix for the corresponding orbits (q =A, B,C), and Sq(E)
are the actions given in Eq. (3) above. The extra factor
2 for the "loop" contribution (C) takes into account the
two orientations of orbiting. We have used the numeri-
cal monodromy method introduced by Baranger, Davies,
and Mahoney I24].

In Fig. 3 we show the calculated amplitudes Aq as
functions of energy. It might come as a surprise that
the amplitude of the "smiley" orbit B, although unstable

SA(e, n} = (2~/6n')(e+ O.O9e'+ O. O56e') (O & e & 1),
SB(e, cr) = (27r/6a )(1.02e+ 0.044e ) (0 & e & 2),

Sc(e, rr) = (2rr/6n )(0.98e —0.025e ) (0 & e & 2).

(3)
These fits reproduce the numerical results within & 3%%uo

in the energy regions shown. [Note that one finds ana-
lytically SA(e = 1) = SA ——6/5cr = 1.146 (27rE*).] The
classical periods, obtained by Tq ——BSq/OE, agree with
the Fourier spectra shown in the top row of Fig. 2, af-
ter averaging them over the energy interval used for the
FFT. Indeed, we see from Eq. (3) that one averaged pe-
riod (C) is slightly below T = 1 and the other two are
slightly above 1. Because of their diferent energy depen-
dence, the Fourier analysis cannot give clean signals but
only averaged periods. Therefore the two higher periods
(A and B) could not be resolved better in the Fourier
spectra.

We anticipate that these periodic orbits yield hg(E)
classically through the Gutzwiller trace formula. Since
we have smoothed out the higher harmonics of the quan-
tum 6g(E), we only 'take the lowest harmonics. Super-
posing the contributions of the above three orbits, we
write

6g ~(E) = AA cos (SA —7r) + AB cos (S~ —7r)

0
0 1

e (= 8Ecx2)

1.5

I"IG, 3. Amplitudes A~ of the Henon-Heiles orbits A
(dashed line; does not exist for e ) 1), B (solid line), and
C (dot-dashed line) in Gutzwiller's trace formula, as ob-
tained numerically from the monodromy matrix. Inset: Ex-
act harmonic-oscillator amplitude 2E, common to all orbits
(dashed straight line), and amplitude As of orbit B in the
Henon-Heiles potential (short-dashed line). The solid line
shows a spline fit connecting the exact numerical amplitude
for E & 16 to its oscillator limit 2E for E & 8. This splined
amplitude As is used in Eq. (4); the amplitudes AA and
Ac are obtained from the ratios of the numerically obtained
values of A~ in the whole energy domain.

throughout, is found to be larger than that of the "loop"
orbit C which is stable up to e 0.89. Note that the
amplitudes for A and B are very close up to e 0.9,
beyond which AA diverges repeatedly (see the reference
quoted in I23]). For e ) 1, of course, AA = 0; there the
amplitude of the "loop" mode C becomes close to that
of the "smiley" mode B.

For low energies, the harmonic part of the Henon-
Heiles potential dominates, and the trace of the mon-
odromy matrix. is close to 4. This leads to the well-known
breakdown of the Gutzwiller trace formula; the ampli-
tudes thus diverge when E ~ 0. In order to salvage the
method, we note that for an isotropic two-dimensional
harmonic oscillator, the quantum bg(E) is exactly given
[25] by 6g(E) = 2E P„r cos (2~nE). From this we infer
that the correct amplitudes in the trace formula should,
in the limit E —+ 0, all approach 2E. We impose this
by hand, as shown by the inset in Fig. 3 for the orbit B
which we take as a reference. The other two amplitudes
are obtained from the ratios of the calculated monodromy
amplitudes. This procedure is somewhat arbitrary but
ensures that Eq. (4) can be applied also for small E.

The resulting bg, ~(E) is shown in the bottom row of
Fig. 2. It is seen to reproduce the main features of the
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quantum hg(E) rather well. For energies around and
above the threshold E*, many more isolated periodi. c or-
bits can be found (e.g. , also a stable double-loop orbit),
which will contribute to 6g(E). We have not attempted
to enumerate and calculate their amplitudes, since our
quantum spectrum is only approximate for E ) E* due
to the neglect of the imaginary parts of the eigenenergies
[cf. the irregular behavior of bg(E)'for a = 0.08 above
E* = 26 in Fig. 2].

In conclusion, we have demonstrated the existence of
quantum beats in a system that is classically chaotic.
The beats are shown to originate, using the approach of
Gutzwiller, from the interference of three simple classi-
cal orbits of comparable periods and amplitudes, that
are partially stable and partially unstable. This novel
feature in the spectral density introduces a long-range
correlation in the energy scale which coexists with the
short-range correlations connected to the chaotic behav-
ior of the system.

It has not escaped our notice that back in 1964, the
same form of a potential in deformation space was used
[26] to study the collective states of nonaxial atomic nu-
clei. Indeed, recent calculations show chaotic signatures
in the collective spectrum of such nuclei [27].
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