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Compactons: Solitons with Finite Wavelength
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To understand the role of nonlinear dispersion in pattern formation, we introduce and study kor-
teweg-de Vries-like equations with nonlinear dispersion; u, +(u )„+(u")„„„=0,m, n) 1. The solitary
wave solutions of these equations have remarkable properties: They collide elastically, but unlike the
Korteweg-de Vries (m =2, n =1) solitons, they have compact support. When two "compactons" collide,
the interaction site is marked by the birth of low-amplitude compacton-anticompacton pairs. These
equations seem to have only a finite number of local conservation laws. Nevertheless, the behavior and
the stability of these compactons is very similar to that observed in completely integrable systems.

PACS numbers: 03.40.Kf, 47.20.Ky, 52.35.Sb, 63.20.Ry

In this Letter we introduce a class of solitary waves
with compact support (which we call compactons) that
are solutions of a two-parameter family of fully nonlinear
dispersive partial differential equations (PDEs). Com-
pactons are solitary waves with the remarkable soliton
property that after colliding with other compactons, they
reemerge with the same coherent shape [1,2]. These par-
ticlelike waves exhibit elastic collisions that are similar to
the soliton interactions associated with completely inte-
grable PDEs supporting an infinite number of conserva-
tion laws. However, unlike the soliton collisions in an in-

tegrable system, the point where two compactons collide
is marked by the creation of low-amplitude compacton-
anticompacton pairs.

A prototypical integrable equation with solitons is the
quasilinear Korteweg-de Vries (KdV) equation

u, +(u )„+u„„=0.
The KdV soliton is proportional to sech and, although it
is highly localized in space, it has an infinite span.

Seeking to understand the role of nonlinear dispersion
in the formation of patterns in liquid drops, we introduce
and study a family of fully nonlinear KdV equations
K(m, n):

u, +(u )„+(u")„„=0,m & 0, 1(n ~ 3.
These equations, which we denote by K(m, n), have the
property that for certain m and n, their solitary wave
solutions have compact support. That is, they vanish
identically outside a finite core region. In numerical ex-
periments, we have found that these compactons collide
as elastically as our numerical experiment is capable of
detecting.

Solutions The solutions .—of the K(2,2) equation,

u, +(u')„+(u') „=0,
are typical of the K(m, n) equations and will be described
in detail to illustrate this remarkable behavior. [A de-

tailed description of the other K(m, n) equations is in

preparation [3].] Traveling-wave solutions u(g=x —).t)
for Eq. (2a) satisfy (after two integrations)

Xu u' Po
ug +P(u, Pp) =Pt t P = — + +

3 4
(2b)

(3)

and u, =0, otherwise.
Although the second derivative of the compacton is

discontinuous at its edges, it is a strong solution of Eq.
(1) because the third derivative acts on u, which has
three smooth derivatives everywhere including the edge.
The nonlinear dispersion is weaker for small u than the
linear dispersion in the KdV equation and allows for the
compactification. The compacton's speed depends on its
height but, unlike the KdV soliton which narrows as the
amplitude (speed) increases, its width is independent of
the speed. Because dispersion increases with amplitude,
at high amplitudes there is far more dispersion than in
the KdV and it can more eAectively counterbalance the
steepening eAect of the nonlinear convection. The invari-
ance of (2a) under u —u and t —t permits negative
anticompactons propagating in the opposite direction.
Because of their compact structure, neither solitons nor
antisolitons interact with each other until the moment of
collision.

The quantity D is conserved in Eq. (2a) when we trans-
form it into the form

t),D+ t)„&=0.
We know of four conservation laws for Eq. (2a) (two of
which are quite unusual) and no further local conserva-
tion laws seem possible [4]:

where Po and P] are constants. Setting Po and P] to zero
leads to a solitary wave with a compact support

u, (x, t) = cos [(x —Xt)j4], when ~x At~ —~
2, tr,

4A.
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FIG. I. The evolution of three K(2, 2) compactons with

speeds A, =2, 1.5, and 1 starting with centers at x =10, 15, and
40.

AFTER 7 - COLLISIONS

FIG. 2. Space-time plot of three compactons in Fig. 1 on a
periodic domain. Note the phase shift whenever they collide.

Di =u, @i =u +(u )„„,2 2 (4a)

D2 =u, @2—
2 u +6u u~„,4 3

D3 4 =u cos(P+x),

e3 4
=sin (P+ x ) (u ')„+cos(P+ x ) (u ')„, .

(4b)

(4c)

(4d)

Though every P is eligible, only two are independent (e.g. ,

P =0 and P = —rr/2). Note also that for compactons

u, (x Xt, r )D3,4(x—,p)dx =0.
Fi ure 1 illustrates the evolution of three compactonsfigure

with speeds X=2.0, 1.5, and 1.0 colliding. The space-
time diagram in Fig. 2 shows the phase shift in phase due
to the collisions in a similar three-compacton system on

a periodic domain. We have performed hundreds of
numerical experiments with between two and five inter-
acting compactons and the compactons have always
remained intact after the collisions. Even after several
dozens of collisions, no radiation is observed, indicating
that the collisions are elastic or the radiation is below the
numerical accuracy.

In the classical soliton theory, the concepts of integra-
bility and elastic collisions have become synonymous. In
our system, even though it is probably not integrable, the
interactions are elastic. This suggests that the mecha-
nism responsible for the elastic collisions is probably not
in tegrability.

After the reemergence of compactons in Fig. 1, the col-
lision site is marked by the birth of a small-amplitude,
zero-mass, compact ripple which very slowly evolves into
compacton-anticompacton pairs. Typically, the max-
imum amplitudes (and velocities) of newly created com-
pacton-anticompacton pairs are less than 5% of the origi-
nal compacton's amplitude and therefore they separate on
a much longer time scale than the original compacton dy-
namics. The subsequent pairs are much smaller and take
much longer time to form. The number of these pairs is
related to the number of interacting compactons. Howev-
er, we cannot exclude the possibility that new pairs with
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FIG. 3. The evolution of the ripple created by the collision of
the three cornpactons in Fig. 1. Note the slower velocities and
the long time it takes for the compactons to emerge.

decreasing amplitudes continue to form indefinitely. In
practice, the presence of noise limits the number of pairs
which can be observed. In Fig. 3 we show an enlarged
picture of the ripple created after the collision of three
compactons in Fig. 1. This ripple then decomposes into
three clearly observable compacton-anticompacton pairs.
When such a ripple is hit by a traveling compacton, the
compacton and ripple reemerge unchanged (except for a
phase shift) and continue to decompose into compactons.

We also have run several numerical experiments where
the initial data were compact but not close to a compac-
ton. These solutions decompose into a number of com-
pactons similar to the example shown in Fig. 4. On the
basis of our observations, we tentatively conclude that the
compactons for Eq. (2a) play the role of nonlinear local
basis functions and that any positive compact initial data
can be decomposed into compactons and anticompactons.

There are several numerical di%culties in integrating
K(2,2). The nonlinear dispersion prevents us from using
the more eAective numerical methods commonly used for
dispersive systems (such as a spectral split-step method).
We used pseudospectral methods in space and a vari-
able order, variable time-step Adams-Bashford-Moulton

565



VOLUME 70, NUMBER 5 P H YSICAL REVIEW LETTERS 1 FEBRUARY 1993

X= l. 2

0 5—

0.0
t=0

0 x 50

x=o 03
x=o [7

50

t = 100

100 150

FIG. 4. The initial data u(x, t =0) = —, cos2(x/2) decon]-

poses into four compactons.

method in time. The lack of smoothness at the edge of
the compacton reduces the spectral method to first order
near the edge and introduces dispersive errors into the
calculation that are diScult to distinguish from radiation
created in a nonelastic collision except by continued mesh
refinement. A further numerical di%culty is caused by
the delicate balance in the nonlinear dispersion. When
expanded, it has a diA'usionlike term 2u u „. On the
trailing edge of the compacton u &0 and this term acts
like a destabilizing backboard diAusion operator. The
solution would be unstable if it were not for the stabiliz-
ing nonlinear dispersion. This balance is easily lost in the
numerical approximation if the aliasing, due to the non-
linearities, is not handled carefully. Even so, our current
numerical schemes fail to calculate the head-on collisions
of compactons and anticompactons of similar amplitude.
In these collisions, it is not clear whether the instability is
due to the numerical aliasing errors, or is caused by a
true instability in the K(2,2) equation.

It is clear from Eq. (2b) that there are three distinct
classes of traveling periodic waves. The phase space of
these waves is shown in Fig. 5. For Pp&0 these waves
can be described by elliptic functions. For Pp=0 the
singular trajectory describes trigonometric waves with the
same period of 4z but with an amplitude that varies with
P~. When P~ =0, u becomes non-negative and these
~aves turn into a train of compactons. Because of the de-
generacy of K(2,2) at u =0, these compactons do not
communicate with each other and therefore can be
separated.

If Pp = —P, the potential well on the negative branch
of Pp where U ~ u ~ U2 supports solitary waves around
the nonzero state U . These "shelf solitons" emerge nat-
urally out of noncompact initial data and seem to collide
elastically with each other. Note that as Pp varies, so
does the location of the potential well, yielding a one-
parameter family of shelf solitons.

The K(m, n) equations arose in our quest to under-
stand the role of nonlinear dispersion in the formation of
nonlinear structures like liquid drops [5]. To derive
K(2,2) consider a dense anharmonic chain with many
neighbors interaction. The first correction to the continu-

p()( 0

FIG. 5. Phase space of the three distinct classes of traveling
waves in the K(2, 2) equation; see Eq. (2b). For Po) 0, u is ei-
ther strictly positive or strictly negative. For Po &0, depending
on the value of P], u is either strictly positive or changes its
sign. Note that the local maximum at u =U gives rise to shelf
solitons. P0=0 is a separating trajectory and describes trig-
onometric waves which turn into compactons when P] =0.

um leads to an equation of the form

u„=f(u)„,+h'g(u)„, „„.
Here f and g are nonlinear functions that depend upon
the details of particular interaction and h is the interpar-
ticle distance in equilibrium. In the original work of Za-
busky and Kruskal [I], only weakly anharmonic interac-
tions of the nearest neighbors were considered. For small
u, f was approximated by a quadratic function and g was
approximated by a linear function. If, instead, we as-
sume f and g are monotone functions for small u but at
some value U*, g softens and has a local extremum (e.g. ,

g =u/[I + u ] ), then expanding in v =u —U* results in a
Bussinesq equation for v with a quadratic dispersion term
in the lowest order. This equation can be expressed as
two equations (describing traveling structures to the right
or to the left), each of which is a K(2,2) equation. If
f(v) is an odd function, the leading-order terms lead to a
K(3,2) equation.

Related topics. —The K(2,2) also approximates the
second-order difference-differential equation

uJ+ (uJ+ ] + uJ —] ) (uJ+ ] uJ —] )/4AX =0,
expanded up to O(hx ). The compact solutions of these
discrete equations have only six nonzero values with a
trailing shelf behind the discrete compactonlike structure
which is very slightly below the value ahead. Other aver-
ages than (uJ+]+ul-])/2 lead to equations, not yet stud-
ied, but with compact structures. If the average is re-
placed by u~, the resulting equation can be mapped into
the Toda lattice but the resulting compactons appear to
be unstable. If the discrete part of (5) is modified to
(u j~+ ]

—u j~ ])/2hx, exp—ansion leads to K(m, m ) with
compactons of the form cos

Returning to the general K(m, n) equations, we ob-
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serve that the solitary waves are compact only if n ) 1.
The singular dispersion at u =0 plays a crucial role in the
compactification. The upper limit on n ~ 3 is necessary
for the compactons to be a solution in the classical sense.
So far, we have studied four cases m, n =2, 3 with the
compacton solutions (g=x —Xt),

K(2, 2): u, = cos ((/4),4X

K(2, 3): u, =elliptic function,

K(3,2): u, =[37.5X —
g ]/30,

K(3,3): u, = ~ J3X/2cos(g/3) .

In hundreds of numerical experiments, these compactons
also reemerge remarkably the same after colliding with
their own kind.

We have found higher dimensional equations that sup-
port partially compact structures. For example, the 3D
Kadomtsev-Petviashvili equation with nonlinear disper-
sion,

t), [u, +uu„+ (u ')„„l + ugly + u„=0,
also has a compacton solution analogous to (3),

8X 2 1 '+z'
u, = cos x+ —X]n(I+t)3(1+I) 4~2 2(l+r)

when the argument of cos is ( in/2i, otherwise u, =0.
The support of this solution is an infinite parabolid strip

traveling to the right. The solution decays in time and ul-
timately the support of the solution straightens out into a
straight strip.

In summary, we have reported our discovery of solitons
with compact support for nonlinear dispersive equations.
The robustness of these compactons and the inapplicabili-
ty of the inverse scattering tools, that worked so well for
the KdV, makes it clear that a new mechanism (about
which we can say very little at this time) is underlying
the processes. Future work will aim at understanding the
nonlinear mechanism that causes these structures to be so
robust. We have seen that elastic collision is accom-
panied by the birth of a compact ripple which slowly
decomposes into compacton-anticompacton pairs. This
event has no counterpart in the conventional soliton
theory. Naturally, one would like to find additional ap-
plications for compactons, such as in nonlinear optics. Is
field theory with particles described by compactons possi-
ble?
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